7/08S

TSO/E
REXX User’s Guide

<|lI!

7/08S

TSO/E
REXX User’s Guide

<|lI!

Note
Before using this information and the product it supports, be sure to read the general information under EAppendix D]

Second Edition, October 2001

This edition applies to Version 1 Release 2 of z/OS (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

This is a maintenance revision of SA22-7791-00.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY 12601-5400

United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):
Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs @us.ibm.com

World Wide Web: hitp://www ibm com/servers/eserver/zseries/zos/webqs html|

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
 Title and order number of this book
» Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents
Figures.
Tables X

About This Book . Xi
Who Should Use ThisBook .Xii
How This Book Is Organized.Xii
Terminology . . . S
Purpose of Each Chapter T 1
Examples. L L L. L. ... XV
Exercises. . . e ()Y,
Where to Find More Informat|on A I (1Y)
Accessing Licensed Books on the Web I (1Y)
Using LookAt to Look Up Message ExplanationsXxv

Summaryof Changes . Xvi

—

Part 1. Learning the REXX Language.

Chapter 1. Introduction.
What is REXX? .
Features of REXX .
Ease of use
Free format
Convenient built-in functlons
Debugging capabilities
Interpreted language .
Extensive parsing capabllltles
Components of REXX.
The SAA Solution .
Benefits of Using a Comp|ler .
Improved Performance
Reduced System Load .
Protection for Source Code and Programs .
Improved Productivity and Quality
Portability of Compiled Programs.
SAA Compliance Checking .

COOODTUUARNRNRNRERNRNW®W®

Chapter 2. Writing and Runnlng a REXX Exec . 7
Before You Begin . T £
Whatisa REXXExec?8
Syntax of REXX Instructions 9
The Character Type of REXX Instructlons]
The Format of REXX Instructions10

Types of REXX Instructions . . . T P24
Execs Using Double-Byte Character Set Names e
Running an Exec . . . e 1<)

Running an Exec Epr|C|tIy e 4]

Running an Exec Implicity17
Interpreting Error Messages .19
Preventing Translation to Uppercase.20

From Withinan Exec. .20

As InputtoanExec .. .20

© Copyright IBM Corp. 1988, 2001 iii

Passing Information to an Exec.
Using Terminal Interaction .
Specifying Values when Invoking an Exec
Preventing Translation of Input to Uppercase .
Passing Arguments

Chapter 3. Using Variables and Expressions .
Using Variables.
Variable Names
Variable Values. .
Exercises - ldentifying Valld Varlable Names .
Using Expressions
Arithmetic Operators .
Comparison Operators .
Logical (Boolean) Operators .
Concatenation Operators .
Priority of Operators .
Tracing Expressions with the TRACE Instructlon
Tracing Operations
Tracing Results.

Chapter 4. Controlling the Flow Within an Exec.

Using Conditional Instructions
IF/THEN/ELSE Instructions . . .
Nested IF/THEN/ELSE Instructions

SELECT/WHEN/OTHERWISE/END Instruction .

Using Looping Instructions
Repetitive Loops .
Conditional Loops .

Combining Types of Loops
Nested DO Loops.

Using Interrupt Instructions
EXIT Instruction
CALL/RETURN Instructlons .
SIGNAL Instruction

Chapter 5. Using Functions
What is a Function? .
Example of a Function .
Built-In Functions .
Arithmetic Functions .
Comparison Functions .
Conversion Functions
Formatting Functions.
String Manipulating Functions
Miscellaneous Functions .
Testing Input with Built-In Functlons .

Chapter 6. Writing Subroutines and Functions .

What are Subroutines and Functions?
When to Write Subroutines vs. Functions .
Writing a Subroutine . .
Passing Information to a Subroutlne .
Receiving Information from a Subroutine
Writing a Function.
Passing Information to a Functlon

z/0OS V1R2.0 TSO/E REXX User’'s Guide

.21
.21
.22
. 23
.24

. 25
. 25
. 26
. 27
.27
. 28
. 28
. 30
.32
. 34
. 35
.37
. 37
. 38

.4
. 42
. 42
. 43
. 44
. 47
. 47
. b2
. 55
. 55
. 56
. 57
. 57
. 58

. 61
. 61
. 62
. 63
. 63
. 63
. 64
. 64
. 64
. 65
. 66

. 69
. 69
. 70
. 70
.72
. 75
.77
.79

Receiving Information from a Functon83

Summary of Subroutines and Functions.88
Chapter 7. ManipulatingData.85
Using Compound Variablesand Stems85
What is a Compound Variable?.85
UsingStems.86
Parsing Data. . . . R < V4
Instructions that Parse T < 1<
Ways of Parsing . . A = 1)
Parsing Multiple Strrngs as Arguments R
Part2. Using REXX9
Chapter 8. Entering Commands fromanExec97
Types of Commands. . . . T * Y
Issuing TSO/E Commands from an Exec . [<
Using Quotations Marks in Commands98
Using Variables in Commands . . . e 1)
Causing Interactive Commands to Prompt the User ..«100
Invoking Another Exec as a Command.100
Issuing Other Types of Commands fromanExec. 101
What is a Host Command Environment? 101
Changing the Host Command Environment 106
Chapter 9. Diagnosing Problems WithinanExec. 111
Debugging Execs
Tracing Commands with the TRACE Instructron e R
Using REXX Special Variables RCand SIGL 112
Tracing with the Interactive Debug Facility 113
Chapter 10. Using TSO/E External Functions 119
TSO/E External Functions .19
Using the GETMSG Function120
Using the LISTDSI Function120
Using the MSG Function.122
Using the MVSVAR Function123
Using the OUTTRAP Function.123
Using the PROMPT Function124
Using the SETLANG Function.125
Using the STORAGE Function. 126
Using the SYSCPUS Function. 126
Using the SYSDSN Function126
Using the SYSVAR Function127
Additional Examples .130
Function Packages . . . P S 16
Search Order for Functlons et
Chapter 11. Storing Information in the Data Stack 135
What is a Data Stack? .135
Manipulating the Data Stack . . . T K1
Adding Elements to the Data Stack T K1)
Removing Elements from the Stack. . . . T K Y4
Determining the Number of Elements on the Stack Ce e o137
Processing of the Data Stack139
Usingthe Data Stack .140

Contents V

Passing Information Between a Routine and the Main Exec . . 140
Passing Information to Interactive Commands . . 142
Issuing Subcommands of TSO/E Commands . 142
Creating a Buffer on the Data Stack. . 142
Creating a Buffer with the MAKEBUF Command . 143
Dropping a Buffer with the DROPBUF Command. . 144
Finding the Number of Buffers with the QBUF Command . 144
Finding the Number of Elements In a Buffer. . 145
Protecting Elements in the Data Stack. . . . 147
Creating a New Data Stack with the NEWSTACK Command . 148
Deleting a Private Stack with the DELSTACK Command . . 149
Finding the Number of Stacks . e . 149
Chapter 12. Processing Data and Input/Output Processing . . 153
Types of Processing .o . 153
Dynamic Modification of a Smgle REXX Expressmn . 153
Using the INTERPRET Instruction . . 153
Using EXECIO to Process Information to and from Data Sets . . 154
When to Use the EXECIO Command . . 154
Using the EXECIO Command . . 154
Return Codes from EXECIO 159
When to Use the EXECIO Command . . 159
Chapter 13. Using REXX in TSO/E and Other MVS Address Spaces 171
Services Available to REXX Execs . e e e 171
Running Execs in a TSO/E Address Space . . 1783
Running an Exec in the Foreground. . 173
Running an Exec in the Background . . 176
Running Execs in a Non-TSO/E Address Space . 177
Using an Exec Processing Routine to Invoke an Exec from a Program 177
Using IRXJCL to Run an Exec in MVS Batch 178
Using the Data Stack in TSO/E Background and MVS Batch . 180
Summary of TSO/E Background and MVS Batch . . 180
CAPABILITIES G . 180
REQUIREMENTS . 181
Defining Language Processor Enwronments . 181
What is a Language Processor Environment? . . 181
Customizing a Language Processor Environment. . 182
Part 3. Appendixes . . 183
Appendix A. Allocating Data Sets . . 185
What is Allocation? . S . 185
Where to Begin . . 186
Preliminary Checklist . . 186
Checklist #1: Creating and Ed|t|ng a Data Set Usmg ISPF/PDF . . 187
Checklist #2: Creating a Data Set with the ALLOCATE Command. . . 190
Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC . . 191
Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC . . 192
Appendix B. Specifying Alternate Libraries with the ALTLIB Command 195
Specifying Alternative Exec Libraries with the ALTLIB Command . . 195
Using the ALTLIB Command Ce e . 195
Stacking ALTLIB Requests . . 196
Using ALTLIB with ISPF . . 196
Examples of the ALTLIB Command . . 196

Vi

z/0OS V1R2.0 TSO/E REXX User’'s Guide

Appendix C. Comparisons Between CLISTand REXX. 197
Accessing System Information.198
Controlling Program Flow .19
Debugging .. .200
Execution200
Interactive Communication .201
Passing Information. .201
Performing Filel/O .202
Syntax L L L L. Lo 202
Using Functions .208
Using Variables .208

Appendix D. Notices. .205
Programming Interface Information207
Trademarks.o207
Bibliography .. .209
TSO/E Publications. .209
Related Publications .20

Index L.

Contents Vi

Viil 2/0S V1R2.0 TSO/E REXX User's Guide

Figures

EXECIO Example 1

EXECIO Example 2

EXECIO Example 3

EXECIO Example 4

EXECIO Example 5

EXECIO Example 5 (contmued)
EXECIO Example 6 . . .
EXECIO Example 6 (contlnued)
EXECIO Example 6 (continued) .

©oOoNOO AN~

© Copyright IBM Corp. 1988, 2001

. 164
. 164
. 165
. 165
. 166
. 167
. 168
. 169
. 170

X z/OS V1R2.0 TSO/E REXX User's Guide

Tables

1. Language Codes for SETLANG Function That Replace the FunctionCall 125

© Copyright IBM Corp. 1988, 2001 Xi

Xii z/0S V1R2.0 TSO/E REXX User's Guide

About This Book

This book describes how to use the TSO/E Procedures Language MVS/REXX
processor (called the language processor) and the REstructured eXtended eXecutor
(REXX) language. Together, the language processor and the REXX language are
known as TSO/E REXX. TSO/E REXX is the implementation of the Systems
Application Architecture (SAA) Procedures Language on the MVS system.

Who Should Use This Book

This book is intended for anyone who wants to learn how to write REXX programs.
More specifically, the audience is programmers who may range from the
inexperienced to those with extensive programming experience, particularly in
writing CLISTs for TSO/E. Because of the broad range of experience in readers,
this book is divided into two parts.

+ Part1 learning the REXX Languagd is for inexperienced programmers who are
somewhat familiar with TSO/E commands and have used the Interactive System
Productivity Facility/Program Development Facility (ISPF/PDF) in TSO/E.
Programmers unfamiliar with TSO/E should first read the 208 TSQ/E Primel.
Experienced programmers new to REXX can also read this section to learn the
basics of the REXX language.

+ Part2_Using REXX is for programmers already familiar with the REXX language
and experienced with the workings of TSO/E. It describes more complex aspects

of the REXX language and how they work in TSO/E as well as in other MVS
address spaces.

If you are a new programmer, you might want to concentrate on the first part. If you
are an experienced TSO/E programmer, you might want to read the first part and
concentrate on the second part.

How This Book Is Organized

In addition to the two parts described in the preceding paragraphs, there are three
appendixes at the end of the book.

+ FAppendix A Allocating Data Sets” an page 188 contains checklists for the tasks

+ FAppendix C_Comparisons Between ClIST and BEXX” on page 197 contains
tables that compare the CLIST language with the REXX language.

Terminology

Throughout this book a REXX program is called an exec to differentiate it from
other programs you might write, such as CLISTs. The command to run an exec in
TSO/E is the EXEC command. To avoid confusion between the two, this book uses
lowercase and uppercase to distinguish between the two uses of the term "exec".
References to the REXX program appear as exec and references to the TSO/E
command appear as EXEC.

© Copyright IBM Corp. 1988, 2001 xiii

Purpose of Each Chapter

At the beginning of each chapter is a statement about the purpose of the chapter.
Following that are headings and page numbers where you can find specific
information.

Examples

Throughout the book, you will find examples that you can try as you read. If the
example is a REXX keyword instruction, the REXX keyword is in uppercase.
Information that you can provide is in lowercase. The following REXX keyword
instruction contains the REXX keyword SAY, which is fixed, and a phrase, which
can vary.

SAY 'This is an example of an instruction.'

Similarly, if the example is a TSO/E command, the command name and keyword
operands, which are fixed, are in uppercase. Information that can vary, such as a
data set name, is in lowercase. The following ALLOCATE command and its
operands are in uppercase and the data set and file name are in lowercase.

"ALLOCATE DATASET(rexx.exec) FILE(sysexec) SHR REUSE"

This use of uppercase and lowercase is intended to make a distinction between
words that are fixed and words that can vary. It does nof mean that you must type
REXX instructions and TSO/E commands with certain words in uppercase and
others in lowercase.

Exercises

Periodically, you will find sections with exercises you can do to test your
understanding of the information. Answers to the exercises are included when
appropriate.

Where to Find More Information
Please see zZ0S Information Roadmag for an overview of the documentation

associated with z/OS, including the documentation available for zZOS TSO/E.

Accessing Licensed Books on the Web

z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:

hffp-//www ibm.com/servers/resaurcelinkd

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:

http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.
Click on User Profiles located on the left-hand navigation bar.

Click on Access Profile.

Click on Request Access to Licensed books.

Supply your key code where requested and click on the Submit button.

A

XiV z/0S V1R2.0 TSO/E REXX User’s Guide

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

Log on to Resource Link using your Resource Link userid and password.
Click on Library.

Click on zSeries.

Click on Software.

Click on z/OS.

Access the licensed book by selecting the appropriate element.

o o~ wNhd -

Using LookAt to Look Up Message Explanations

LookAt is an online facility that allows you to look up explanations for z/OS
messages and system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:

hffp-//www ibhm.com/servers/eserver/zseries/zas/bkserv/loaokat/lookat htmll

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
News and Help or from the z/OS Collection, SK3T-4269 .

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following example:

lookat iecl92i
This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release if needed.

Note: Some messages have information in more than one book. For example,

IEC192I has routing and descriptor codes listed in QS MVS Routing and
Descriptor Codes

. For such messages, LookAt prompts you to choose which

book to open.

About This Book XV

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

XVi z/0S ViR2.0 TSO/E REXX User’s Guide

Summary of Changes

This book is available in softcopy formats only. The most current version is available
in HTML and PDF formats on the Web site at URL:

http://www.ibm.com/servers/eserver/zseries/zos/

Summary of Changes
for SA22-7791-01
2z/0OS Version 1 Release 2

This book contains information previously presented in [2Z0S TSO/E REXX User’s
Guide, SA22-7791-00, which supports z/OS Version 1 Release 1.

New Information

. Reference information has been added to the z/OS UNIX callable services. See
) f)”

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

You may notice changes in the style and structure of some content in this book—for
example, headings that use uppercase for the first letter of initial words only, and
procedures that have a different look and format. The changes are ongoing
improvements to the consistency and retrievability of information in our books.

© Copyright IBM Corp. 1988, 2001 XVii

XVili z0S V1R2.0 TSO/E REXX Users Guide

Part 1. Learning the REXX Language

The REXX language is a versatile general-purpose programming language that can
be used by new and experienced programmers. This part of the book is for
programmers who want to learn the REXX language. The chapters in this part

cover the following topics.

° ‘

that make it a powerful programming tool.

— The REXX language has many features

‘

”

— Execs are easy to

write and have few syntax rules.

”

— Variables,

expressions, and operators are essential when writing execs that do arithmetic
and comparisons.

”

— You can use

instructions to branch, loop, or interrupt the flow of an exec.

« EChapter 5_Using Functions” on page 61 — A function is a sequence of

‘

instructions that can perform a specific task and must return a value.

”

— You can write

internal and external routines that are called by an exec.

‘

— Compound variables and parsing

are two ways to manipulate data.

Note:

Note:

© Copyright IBM Corp. 1988, 2001

Although you can write a REXX exec to run in a non-TSO/E address space
in MVS, the chapters and examples in this part assume the exec will run in a
TSO/E address space. If you want to write execs that run outside of a
TSO/E address space, keep in mind the following exceptions to information
in Part 1:

* An exec that runs outside of TSO/E cannot include TSO/E commands,
unless you use the TSO/E environment service (see note).

* In TSO/E, several REXX instructions either display information on the
terminal or retrieve information that the user enters at the terminal. In a
non-TSO/E address space, these instructions get information from the
input stream and write information to the output stream.

— SAY — this instruction sends information to the output DD whose
default is SYSTSPRT.

— PULL — this instruction gets information from the input DD whose
default is SYSTSIN.

— TRACE — this instruction sends information to the output DD whose
default is SYSTSPRT.

— PARSE EXTERNAL — this instruction gets information from the input
DD whose default is SYSTSIN.

* The USERID built-in function, instead of returning a user identifier, might
return a stepname or jobname.

You can use the TSO/E environment service, IKITSOEV, to create a TSO/E
environment in a non-TSO/E address space. If you run a REXX exec in the
TSO/E environment you created, the exec can contain TSO/E commands,
external functions, and services that an exec running in a TSO/E address
space can use. That is, the TSO host command environment (ADDRESS
TSO) is available to the exec. For more information about the TSO/E
environment service and the different considerations for running REXX execs

within the environment, see QS TSQ/E Programming Services.

2 2/0S ViR2.0 TSO/E REXX Users Guide

Chapter 1. Introduction

What is REXX? .
Features of REXX .
Ease of use
Free format
Convenient built-in functlons
Debugging capabilities
Interpreted language .
Extensive parsing capabllltles
Components of REXX.
The SAA Solution .
Benefits of Using a Comp|ler .
Improved Performance
Reduced System Load .
Protection for Source Code and Programs .
Improved Productivity and Quality
Portability of Compiled Programs.
SAA Compliance Checking .

R R R R RIS I N NN NN N N A A

This chapter describes the REXX programming language and some of its features.

What is REXX?

REXX is a programming language that is extremely versatile. Aspects such as
common programming structure, readability, and free format make it a good
language for beginners and general users. Yet because the REXX language can be
intermixed with commands to different host environments, provides powerful
functions and has extensive mathematical capabilities, it is also suitable for more
experienced computer professionals.

The TSO/E implementation of the REXX language allows REXX execs to run in any
MVS address space. You can write a REXX exec that includes TSO/E services and
run it in a TSO/E address space, or you can write an application in REXX to run
outside of a TSO/E address space. For more information, see EChapter 13 lsing

BEXY o TSA/E and (ffher MVS Adess Snaces” =1

There is also a set of z/OS UNIX extensions to the TSO/E Restructured Extended
Executor (REXX) language which enable REXX programs to access z/OS UNIX
callable services. The z/OS UNIX extensions, called syscall commands, have
names that correspond to the names of the callable services that they invoke—for
example, access, chmod, and chown. For more information about the z/OS UNIX

extensions, see WM&MMM

Features of REXX

In addition to its versatility, REXX has many other features, some of which are:

Ease of use

The REXX language is easy to read and write because many instructions are
meaningful English words. Unlike some lower-level programming languages that
use abbreviations, REXX instructions are common words, such as SAY, PULL, IF...
THEN... ELSE..., DO... END, and EXIT.

© Copyright IBM Corp. 1988, 2001 3

Features of REXX

Free format

There are few rules about REXX format. You need not start an instruction in a
particular column, you can skip spaces in a line or skip entire lines, you can have
an instruction span many lines or have multiple instructions on one line, variables
do not need to be predefined, and you can type instructions in upper, lower, or
mixed case. The few rules about REXX format are covered in t

Convenient built-in functions

REXX supplies built-in functions that perform various processing, searching, and
comparison operations for both text and numbers. Other built-in functions provide
formatting capabilities and arithmetic calculations.

Debugging capabilities
When a REXX exec running in TSO/E encounters an error, messages describing

the error are displayed on the screen. In addition, you can use the REXX TRACE
instruction and the interactive debug facility to locate errors in execs.

Interpreted language

TSO/E implements the REXX language as an interpreted language. When a REXX
exec runs, the language processor directly processes each language statement.
Languages that are not interpreted must be compiled into machine language and
possibly link-edited before they are run. You can use the IBM licensed product, IBM
Compiler and Library for REXX/370, to provide this function.

Extensive parsing capabilities

REXX includes extensive parsing capabilities for character manipulation. This
parsing capability allows you to set up a pattern to separate characters, numbers,
and mixed input.

Components of REXX

The various components of REXX are what make it a powerful tool for
programmers. REXX is made up of:

 Instructions — There are five types of instructions. All but commands are
processed by the language processor.
— Keyword

Assignment

Label

Null

Command (both TSO/E REXX commands and host commands)

» Built-in functions — These functions are built into the language processor and
provide convenient processing options.

» TSO/E external functions — These functions are provided by TSO/E and interact
with the system to do specific tasks for REXX.

» Data stack functions — A data stack can store data for I/0O and other types of
processing.

The SAA Solution

The SAA solution is based on a set of software interfaces, conventions, and
protocols that provide a framework for designing and developing applications.

4 7z/0S ViR2.0 TSO/E REXX Users Guide

The SAA Solution

The SAA Procedures Language has been defined as a subset of the REXX
language. Its purpose is to define a common subset of the language that can be
used in several environments. TSO/E REXX is the implementation of the SAA
Procedures Language on the MVS system.

The SAA solution:

» Defines a common programming interface you can use to develop applications
that can be integrated with each other and transported to run in multiple SAA
environments.

* Defines common communications support that you can use to connect
applications, systems, networks, and devices.

» Defines a common user access that you can use to achieve consistency in
panel layout and user interaction techniques.

» Offers some applications and application development tools written by IBM.

Several combinations of IBM hardware and software have been selected as SAA
environments. These are environments in which IBM will manage the availability of
support for applicable SAA elements, and the conformance of those elements to
SAA specifications. The SAA environments are the following:

+ MVS
- TSO/E
- CICS
- IMS

« VM CMS
» Operating System/400 (OS/400)
* Operating System/2 (0S/2)

Benefits of Using a Compiler

The IBM Compiler for REXX/370 (Program Number 5695-013) and the IBM Library
for REXX/370 (Program Number 5695-014) provide significant benefits for
programmers during program development and for users when a program is run.
The benefits are:

* Improved performance

* Reduced system load

» Protection for source code and programs

* Improved productivity and quality

» Portability of compiled programs

» Checking for compliance to SAA

Improved Performance

The performance improvements that you can expect when you run compiled REXX
programs depend on the type of program. A program that performs large numbers
of arithmetic operations of default precision shows the greatest improvement. A
program that mainly enters commands to the host shows minimal improvement
because REXX cannot decrease the time taken by the host to process the
commands.

Reduced System Load

Compiled REXX programs run faster than interpreted programs. Because a
program has to be compiled only once, system load is reduced and response time
is improved when the program is run frequently.

Chapter 1. Introduction 5

Benefits of Using a Compiler

For example, a REXX program that performs many arithmetic operations might take
12 seconds to run interpreted. If the program is run 60 times, it uses about 12
minutes of processor time. The same program when compiled might run six times
faster, using only about 2 minutes of processor time.

Protection for Source Code and Programs

Your REXX programs and algorithms are assets that you want to protect.

The Compiler produces object code, which helps you protect these assets by
discouraging people from making unauthorized changes to your programs. You can
distribute your REXX programs in object code only.

Load modules can be further protected by using a security server, such as RACF.

Improved Productivity and Quality

The Compiler can produce source listings, cross-reference listings, and messages,
which help you more easily develop and maintain your REXX programs.

The Compiler identifies syntax errors in a program before you start testing it. You
can then focus on correcting errors in logic during testing with the REXX interpreter.

Portability of Compiled Programs

A REXX program compiled under MVS/ESA can run under CMS. Similarly, a REXX
program compiled under CMS can run under MVS/ESA.

SAA Compliance Checking

6

The Systems Application Architecture (SAA) definitions of software interfaces,
conventions, and protocols provide a framework for designing and developing
applications that are consistent within and across several operating systems.

The SAA Procedures Language is a subset of the REXX language supported by the
interpreter under TSO/E, and can be used in this operating environment.

To help you write programs for use in all SAA environments, the Compiler can
optionally check for SAA compliance. With this option in effect, a warning message
is issued for each non-SAA item found in a program.

For more information, see IBM Compiler and Library for REXX/370; Introducing the
Next Step in REXX Programming.

z/0OS V1R2.0 TSO/E REXX User’'s Guide

Chapter 2. Writing and Running a REXX Exec

Before You Begin
What is a REXX Exec?
Syntax of REXX Instructions
The Character Type of REXX Instructlons .
Using Quotation Marks in an Instruction .
The Format of REXX Instructions .
Beginning an instruction
Continuing an instruction .
Continuing a literal string without addlng a space
Ending an instruction.
Types of REXX Instructions .
Keyword . .
Assignment .
Label
Null .
Command.
Execs Using Double- Byte Character Set Names
Running an Exec .
Running an Exec Epr|C|tIy
Running an Exec Implicitly -
Allocating a PDS to a System File.
Exercises - Running the Example Execs
Interpreting Error Messages . .
Preventing Translation to Uppercase .
From Within an Exec.
As Input to an Exec .
Exercises - Running and Modlfylng the Example Execs
Passing Information to an Exec. e
Using Terminal Interaction .
Specifying Values when Invoking an Exec
Specifying Too Few Values
Specifying Too Many Values .
Preventing Translation of Input to Uppercase
Exercises - Using the ARG Instruction
Passing Arguments .
Passing Arguments Using the CALL Instruct|on or REXX Funct|on CaII
Passing Arguments Using the EXEC Command . Coe

This chapter introduces execs and their syntax, describes the steps involved in
writing and running an exec, and explains concepts you need to understand to
avoid common problems.

Before You Begin

Before you can write a REXX program, called an exec, you need to create a data
set to contain the exec. The data set can be either sequential or partitioned, but if
you plan to create more than one exec, it is easier to create a REXX library as a

partitioned data set (PDS) with execs as members.

To create a PDS, allocate a data set with your prefix (usually your user ID) as the
first qualifier, any name as the second qualifier, and preferably "exec" as the third

qualifier. You can allocate the PDS with the Utilities option in ISPF/PDF or with the

© Copyright IBM Corp. 1988, 2001

Before You Begin

TSO/E ALLOCATE command. For specific information about allocating a data set

for an exec, see [Appendix A. Allocating Data Sets” on page 185.

What is a REXX Exec?

A REXX exec consists of REXX language instructions that are interpreted directly
by the REXX interpreter or compiled directly by a REXX language compiler and
executed by a Compiler Runtime Processor. An exec can also contain commands
that are executed by the host environment.

An advantage of the REXX language is its similarity to ordinary English. This
similarity makes it easy to read and write a REXX exec. For example, an exec to
display a sentence on the screen uses the REXX instruction SAY followed by the
sentence to be displayed.

Example of a Simple Exec

[Fk K kkkkkkkkkkkkhkkkhkkhhkrkhh REXX *kdkrdhshhkrdhdhdrhdhdrhhdrhhhrrkrs *kkkk [

SAY 'This is a REXX exec.'

Note that this simple exec starts with a comment line to identify the program as a
REXX exec. A comment begins with /* and ends with */. To prevent
incompatibilities with CLISTs, IBM recommends that all REXX execs start with
a comment that includes the characters “REXX” within the first line (line 1) of
the exec. Failure to do so can lead to unexpected or unintended results in
your REXX exec. More about comments and why you might need a REXX exec
identifier appears later

When you run the exec, you see on your screen the sentence:

(: This is a REXX exec. :)

Even in a longer exec, the instructions flow like ordinary English and are easy to
understand.

— Example of a Longer Exec
/**************************** REXX *********************************/

/* This exec adds two numbers and displays their sum. */
/********************************** """""""""""""""""" /

SAY 'Please enter a number.'

PULL numberl

SAY 'Now enter a number to add to the first number.'
PULL number?2

sum = numberl + number2

SAY 'The sum of the two numbers is' sum'.'

When you run the example, the exec interacts with you at the terminal. First you
see on your screen:

C PTlease enter a number.)

8 2/0S V1R2.0 TSO/E REXX User's Guide

What is a REXX Exec?

When you type a number, for example 42, and press the Enter key, the variable
numberl is assigned the value 42. You then see another sentence on the screen.

(Now enter a number to add to the first number.)

When you enter another number, for example 21, the variable number?2 is assigned
the value 21. Then the values in numberl and number?2 are added and the total is
assigned to sum. You see a final sentence on the screen displaying the sum.

(The sum of the two numbers is 63.)

Before you actually try these examples, please read the next two sections:

Syntax of REXX Instructions

Some programming languages have rigid rules about how and where characters
are entered on each line. For example, CLIST statements must be entered in
uppercase, and assembler statements must begin in a particular column. REXX, on
the other hand, has simple syntax rules. There is no restriction on how characters
are entered and generally one line is an instruction regardless of where it begins or
where it ends.

The Character Type of REXX Instructions

You can enter a REXX instruction in lowercase, uppercase, or mixed case.
However, alphabetic characters are changed to uppercase, unless you enclose
them in single or double quotation marks.

Using Quotation Marks in an Instruction
A series of characters enclosed in matching quotation marks is called a literal string.
The following examples both contain literal strings.

SAY 'This is a REXX Titeral string.' /* Using single quotes x/

SAY "This is a REXX Titeral string." /* Using double quotes */

You cannot enclose a literal string with one each of the two types of quotation
marks. The following is not a correct example of an enclosed literal string.

SAY 'This is a REXX Tliteral string." /* Using mismatched quotes x/

When you omit the quotation marks from a SAY instruction as follows:
SAY This is a REXX string.

you see the statement in uppercase on your screen.

C THIS IS A REXX STRING.)

Note: If any word in the statement is the name of a variable that has already been
assigned a value, REXX substitutes the value. For information about

variables, see [lsing Variables” on page 285.

Chapter 2. Writing and Running a REXX Exec 9

Syntax of REXX Instructions

If a string contains an apostrophe, you can enclose the literal string in double
quotation marks.

SAY "This isn't a CLIST instruction."

You can also use two single quotation marks in place of the apostrophe, because a
pair of single quotation marks is processed as one.

SAY 'This isn't a CLIST instruction.'

Either way, the outcome is the same.

(: This isn't a CLIST instruction. :)

The Format of REXX Instructions

The REXX language uses a free format. This means you can insert extra spaces
between words and blank lines freely throughout the exec without causing an error.
A line usually contains one instruction except when it ends with a comma (,) or
contains a semicolon (;). A comma is the continuation character and indicates that
the instruction continues to the next line. The comma, when used in this manner,
also adds a space when the lines are concatenated. A semicolon indicates the end
of the instruction and is used to separate multiple instructions on one line.

Beginning an instruction

An instruction can begin in any column on any line. The following are all valid
instructions.

SAY 'This is a Titeral string.'

SAY 'This is a literal string.'
SAY 'This is a Titeral string.'

This example appears on the screen as follows:

This is a Titeral string.
This is a literal string.
This is a Titeral string.

Continuing an instruction

A comma indicates that the instruction continues to the next line. Note that a space
is added between “extended” and “REXX” when it appears on the screen.

SAY 'This is an extended',
'"REXX Titeral string.

This example appears on the screen as one line.

(This is an extended REXX literal string.)

Also note that the following two instructions are identical and yield the same result
when displayed on the screen:
SAY 'This is',

'a string.'

is functionally identical to:
SAY 'This is' 'a string.'

These examples appear on the screen as:

10 z0OS V1R2.0 TSO/E REXX Users Guide

Syntax of REXX Instructions

(This is a string.)

In the first example, the comma at the end of line 1 adds a space when the two
lines are concatenated for display. In the second example, the space between the
two separate strings is preserved when the line is displayed.

Continuing a literal string without adding a space
If you need to continue an instruction to a second or more lines but do not want

REXX to add spaces when the line appears on the screen, use the concatenation
operand (two single OR bars,).

SAY 'This is an extended literal string that is bro'|],
'ken in an awkward place.'

This example appears on the screen as one line without adding a space within the
word “broken”.

(This is an extended Titeral string that is broken in an awkward place.)

Also note that the following two instructions are identical and yield the same result
when displayed on the screen:
SAY 'This is' ||,

'a string.'

is functionally identical to:
SAY 'This is' || 'a string.'

These examples appear on the screen as:

(This isa string.)

In the first example, the concatenation operator at the end of line 1 causes the
deletion of any spaces when the two lines are concatenated for display. In the
second example, the concatenation operator also concatenates the two strings
without space when the line is displayed.

Ending an instruction

The end of the line or a semicolon indicates the end of an instruction. If you put
more than one instruction on a line, you must separate each instruction with a
semicolon. If you put one instruction on a line, it is best to let the end of the line
delineate the end of the instruction.

SAY 'Hil!'; say 'Hi again!'; say 'Hi for the last time!'

This example appears on the screen as three lines.

Hi!
Hi again!
Hi for the last time!

The following example demonstrates the free format of REXX.

Chapter 2. Writing and Running a REXX Exec 11

Syntax of REXX Instructions

— Example of Free Format

[FHrk gk rk Rk h Rk krk Rk k Rk Rxx REXX *okhdkdhrhshrhrhhrhhrhhhhrhrrhrrorrsrs/

SAY 'This is a REXX literal string.'

SAY 'This is a REXX Titeral string.'
SAY 'This is a REXX literal string.'

SAY,

'This',

1 .l S 1 s

|a| s

'"REXX',

'Titeral',

'string.’'

SAY'This is a REXX literal string.';SAY'This is a REXX Titeral string.'
SAY ! This is a REXX Titeral string.'

When the example runs, you see six lines of identical output on your screen
followed by one indented line.

This is a REXX Titeral string.

This is a REXX Titeral string.

This is a REXX Titeral string.

This is a REXX Titeral string.

This is a REXX Titeral string.

This is a REXX Titeral string.
S

This is a REXX Titeral string.

Thus you can begin an instruction anywhere on a line, you can insert blank lines,
and you can insert extra spaces between words in an instruction because the
language processor ignores blank lines and spaces that are greater than one. This
flexibility of format allows you to insert blank lines and spaces to make an exec
easier to read.

Only when words are parsed do blanks and spaces take on significance. More

about parsing is covered in EParsing Data” on page 87.
Types of REXX Instructions

There are five types of REXX instructions: keyword, assignment, label, null, and
command. The following example is an ISPF/PDF Edit panel that shows an exec
with various types of instructions. A description of each type of instruction appears
after the example. In most of the descriptions, you will see an edit line number
(without the prefixed zeroes) to help you locate the instruction in the example.

12 2z0S V1R2.0 TSO/E REXX Users Guide

Syntax of REXX Instructions

g N
EDIT ---- USERID.REXX.EXEC(TIMEGAME)=--=--==--==--=o----- COLUMNS 009 080

COMMAND ===> SCROLL ===> HALF
TOP OF DATA
000001 / REXX /
000002 /* This is an interactive REXX exec that asks a user for thex/
000003 /* time and then displays the time from the TIME command. */
000004 /xx * * * * * * /
000005 Gamel:

000006

000007 SAY 'What time is it?'

000008 PULL usertime /* Put the user's response
000009 into a variable called

000010 "usertime" */

000011 IF usertime = '' THEN /* User didn't enter a time */
000012 SAY "0.K. Game's over."

000013 ELSE

000014 DO

000015 SAY "The computer says:"

000016 /* TSO system */ TIME /* command */

000017 END

000018

000019 EXIT

BOTTOM OF DATA
- /

Keyword

A keyword instruction tells the language processor to do something. It begins with a
REXX keyword that identifies what the language processor is to do. For example,
SAY (line 7) displays a string on the screen and PULL (line 8) takes one or more
words of input and puts them into the variable usertime.

IF, THEN (line 11) and ELSE (line 13) are three keywords that work together in one
instruction. Each keyword forms a clause, which is a subset of an instruction. If the
expression that follows the IF keyword is true, the instruction that follows the THEN
keyword is processed. Otherwise, the instruction that follows the ELSE keyword is
processed. If more than one instruction follows a THEN or an ELSE, the
instructions are preceded by a DO (line 14) and followed by an END (line 17). More
information about the IF/THEN/ELSE instruction appears in EUsing Conditional

The EXIT keyword (line 19) tells the language processor to end the exec. Using
EXIT in the preceding example is a convention, not a necessity, because
processing ends automatically when there are no more instructions in the exec.

More about EXIT appears in LEXIT Instruction” on page 57.

Assignment

An assignment gives a value to a variable or changes the current value of a
variable. A simple assignment instruction is:

number = 4

In addition to giving a variable a straightforward value, an assignment instruction
can also give a variable the result of an expression. An expression is something
that needs to be calculated, such as an arithmetic expression. The expression can
contain numbers, variables, or both.

4 + 4

number

number = number + 4

Chapter 2. Writing and Running a REXX Exec 13

Syntax of REXX Instructions

In the first of the two examples, the value of number is 8. If the second example
directly followed the first in an exec, the value of number would become 12. More

about expressions is covered in [Using Expressions” on page 24.

Label
A label, such as Gamel: (line 5), is a symbolic name followed by a colon. A label can
contain either single- or double-byte characters or a combination of single- and
double-byte characters. (Double-byte characters are valid only if you have included
OPTIONS ETMODE as the first instruction in your exec.) A label identifies a portion
of the exec and is commonly used in subroutines and functions, and with the
SIGNAL instruction. More about the use of labels appears in EChapter 6_Writind

i ions” and ESIGNAL Instruction” on page 58

Null
A null is a comment or a blank line, which is ignored by the language processor but
make an exec easier to read.

* Comments (lines 1 through 4, 8 through 11, 16)

A comment begins with /* and ends with */. Comments can be on one or more
lines or on part of a line. You can put information in a comment that might not be
obvious to a person reading the REXX instructions. Comments at the beginning
can describe the overall purpose of the exec and perhaps list special
considerations. A comment next to an individual instruction can clarify its
purpose.

Note: To prevent incompatibilities with CLISTs, IBM recommends that all
REXX execs start with a comment that includes the characters
“REXX” within the first line (line 1) of the exec. Failure to do so can
lead to unexpected or unintended results in your REXX exec. This
type of comment is called the REXX exec identifier and immediately
identifies the program to readers as a REXX exec and also distinguishes it
from a CLIST. It is necessary to distinguish execs from CLISTs when they
are both stored in the system file, SYSPROC. For more information about

where and how execs are stored, see [Bunning an Fxec Implicitly” on

* Blank lines (lines 6, 18)

Blank lines help separate groups of instructions and aid readability. The more
readable an exec, the easier it is to understand and maintain.

Command
An instruction that is not a keyword instruction, assignment, label, or null is

processed as a command and is sent to a previously defined environment for
processing. For example, the word "TIME" in the previous exec (line 16), even
though surrounded by comments, is processed as a TSO/E command.

/* TSO system x/ TIME /* command =*/

More information about issuing commands appears in Chapter 8 Entering

Execs Using Double-Byte Character Set Names

You can use double-byte character set (DBCS) names in your REXX execs for
literal strings, labels, variable names, and comments. Such character strings can be
single-byte, double-byte, or a combination of both single- and double-byte names.
To use DBCS names, you must code OPTIONS ETMODE as the first instruction in
the exec. ETMODE specifies that those strings that contain DBCS characters are to

14 z0S V1R2.0 TSO/E REXX Users Guide

Execs Using Double-Byte Character Set Names

be checked as being valid DBCS strings. DBCS characters must be enclosed within
shift-out (X'OE") and shift-in (X'OF') delimiters. In the following example, the shift-out
(SO) and shift-in (SI) delimiters are represented by the less than symbol (<) and
the greater than symbol (>) respectively.! For example, <.S.Y.M.D> and
<.D.B.C.S.R.T.N> represent DBCS symbols in the following examples.

Example 1

The following is an example of an exec using a DBCS variable name and a DBCS
subroutine label.

/* REXX =/

OPTIONS 'ETMODE' /* ETMODE to enable DBCS variable names =x/

j=1

<.S.Y.M.D> = 10 /* Variable with DBCS characters between
shift-out (<) and shift-in (>) */

CALL <.D.B.C.S.R.T.N> /* Invoke subroutine with DBCS name */

<.D.B.C.S.R.T.N>: /* Subroutine with DBCS name */

DO i =1T0 10

IF x.i = <.S.Y.D.M> THEN /* Does x.i match the DBCS variable's
value? */
SAY 'Value of the DBCS variable is : ' <.S.Y.D.M>

END

EXIT 0

Example 2

The following example shows some other uses of DBCS variable names with the
EXECIO stem option, as DBCS parameters passed to a program invoked through
LINKMVS, and with built-in function, LENGTH.

/* REXX */
OPTIONS 'ETMODE' /* ETMODE to enable DBCS variable names */

"ALLOC FI(INDD) DA('DEPTA29.DATA') SHR REU"
[ke ek ok ok ok ok ok ok ok ko ko ke ke ko ko ko k ook koo kR ko k ke ko ko k ko k ko k ok

/* Use EXECIO to read Tines into DBCS stem variables */

/***/

"EXECIO * DISKR indd (FINIS STEM <.d.b.c.s_ .s.t.e.m>."

IF rc = 0 THEN /* if good return code from execio */
[Hrk gk kg kk ok kk ko kk kR ok ok kR kk ko kk ko kk ko kk ko kk ko kk ok kR ok ok k ok ok kk ok kK ok ok k /
/* Say each DBCS stem variable set by EXECIO */

/***/
DO i =1T0 <.d.b.c.s__.s.t.e.m>.0
SAY "Line " i "==> " <.d.b.c.s__.s.t.e.m>.i
END
Tinel_<.v.a.l.u.e> = <.d.b.c.s__.s.t.e.m>.1 /* line 1 value */

Tine_len = length(linel_<.v.a.l.u.e>) /* Length of Tine */

/***/
/* Invoke LINKMVS command "proca29" to process a line. */

1. The SO and Sl characters are non-printable.

Chapter 2. Writing and Running a REXX Exec 15

Execs Using Double-Byte Character Set Names

/* Two variable names are used to pass 2 parameters, one of */
/* which is a DBCS variable name. The LINKMVS host command */
/* environment routine will look up the value of the two */
/* variables and pass their values to the address LINKMVS */
/* command, "proca29". */

/***/
ADDRESS LINKMVS "proca29 1line_len Tlinel <.v.a.l.u.e>"
"FREE FI(INDD)"

EXIT 0

Running an Exec

After you have placed REXX instructions in a data set, you can run the exec
explicitly by using the EXEC command followed by the data set name and the
"exec" keyword operand, or implicitly by entering the member name. You can run
an exec implicitly only if the PDS that contains it was allocated to a system file.
More information about system files appears in the Lt i icitly”

Running an Exec Explicitly

The EXEC command runs non-compiled programs in TSO/E. To run an exec
explicitly, enter the EXEC command followed by the data set name that contains the
exec and the keyword operand "exec" to distinguish it from a CLIST.

You can specify a data set name according to the TSO/E data set naming
conventions in several different ways. For example the data set name
USERID.REXX.EXEC(TIMEGAME) can be specified as:

* A fully-qualified data set, which appears within quotation marks.
EXEC 'userid.rexx.exec(timegame)' exec

* A non fully-qualified data set, which has no quotation marks can eliminate your
profile prefix (usually your user ID) as well as the third qualifier, exec.

EXEC rexx.exec(timegame) exec /* eliminates prefix */
EXEC rexx(timegame) exec /* eliminates prefix and exec */

For information about other ways to specify a data set name, see the EXEC
command in 2Z0S TSO/F Command Referencd.

You can type the EXEC command in the following places:
« At the READY prompt

READY
EXEC rexx.exec(timegame) exec

* From the COMMAND option of ISPF/PDF

----------------------------- TSO COMMAND PROCESSOR = =-====mmmmmmmmmmmmmaoeee
ENTER TSO COMMAND OR CLIST BELOMW:

===> exec rexx.exec(timegame) exec

\ENTER SESSION MANAGER MODE ===> NO (YES or NO)

16 z0S V1R2.0 TSO/E REXX Users Guide

Running an Exec

* On the COMMAND line of any ISPF/PDF panel as long as the EXEC command
is preceded by the word "tso".

------------------------------ EDIT - ENTRY PANEL == mmmmmmmommoo oo
COMMAND ===> tso exec rexx.exec(timegame) exec

ISPF LIBRARY:

PROJECT ===> PREFIX

GROUP ===> REXX ===> S== ===>

TYPE ===> EXEC

MEMBER ===> TIMEGAME (Blank for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
==> (If not cataloged)

VOLUME SERIAL
DATA SET PASSWORD ===> (If password protected)
PROFILE NAME ===> (Blank defaults to data set type)
INITIAL MACRO ===> LOCK ===> YES (YES, NO or NEVER)
9 FORMAT NAME ===> MIXED MODE ===> NO (YES or NO))

Running an Exec Implicitly

Running an exec implicitly means running an exec by simply entering the member
name of the data set that contains the exec. Before you can run an exec implicitly,
you must allocate the PDS that contains it to a system file (SYSPROC or
SYSEXEC).

SYSPROC is a system file whose data sets can contain both CLISTs and execs.
(Execs are distinguished from CLISTs by the REXX exec identifier, a comment at
the beginning of the exec the first line of which includes the word "REXX".)
SYSEXEC is a system file whose data sets can contain only execs. (Your
installation might have changed the name to something other than SYSEXEC, but
for the purposes of this book, we will call it SYSEXEC.) When both system files are
available, SYSEXEC is searched before SYSPROC.

Allocating a PDS to a System File
To allocate the PDS that contains your execs to a system file, you need to do the

following:

» Decide if you want to use the separate file for execs (SYSEXEC) or combine
CLISTs and execs in the same file (SYSPROC). For information that will help you
decide, see [Thi i i i

» Use one of the following two checklists for a step-by-step guide to writing an
exec that allocates a PDS to a system file.

¢ : . T+ : ”

bage 101

After your PDS is allocated to the system file, you can then run an exec by
simply typing the name of the data set member that contains the exec. You can
type the member name in any of the following locations:
— At the READY prompt

READY

timegame
— From the COMMAND option of ISPF/PDF

Chapter 2. Writing and Running a REXX Exec 17

Running an Exec

TSO COMMAND PROCESSOR
ENTER TSO COMMAND OR CLIST BELOW:

==> timegame

(YES or NO)

ENTER SESSION MANAGER MODE ===> NO
- v

— On the COMMAND line of any ISPF/PDF panel as long as the member name
is preceded by "tso".

COMMAND ===> tso timegame

ISPF LIBRARY:

PROJECT ===> PREFIX

GROUP ===> REXX ===> ===> ===>
TYPE ===> EXEC

MEMBER ===> TIMEGAME (Blank for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===

\

(If not cataloged)
DATA SET PASSWORD == (If password protected)

PROFILE NAME

==> (Blank defaults to data set type)

INITIAL MACRO

==> LOCK ===> YES (YES, NO or NEVER)

FORMAT NAME ===> MIXED MODE ===> NO (YES or NO)
- J

To reduce the search time for an exec that is executed implicitly and to differentiate
it from a TSO/E command, precede the member name with a %:

READY
%timegame

When a member name is preceded by %, TSO/E searches a limited number of
system files for the name, thus reducing the search time. Without the %, TSO/E
searches several files before it searches SYSEXEC and SYSPROC to ensure that
the name you entered is not a TSO/E command.

Exercises - Running the Example Execs

Create a PDS exec library using Checklist #1 or Checklist #2 in FAppendix Al
Allocating Data Sets” on page 1848, Then try the example execs from the beginning
of this chapter. Run them explicitly with the EXEC command and see if the results
you get are the same as the ones in this book. If they are not, why aren’t they the
same?

Now write an exec to allocate your PDS to SYSPROC or SYSEXEC using Checklist
#3 on page flodl or Checklist #4 on page . Then run the example execs
implicitly. Which way is easier?

18 z0S V1R2.0 TSO/E REXX Users Guide

Interpreting Error Messages

Interpreting Error Messages

When you run an exec that contains an error, an error message often displays the
line on which the error occurred and gives an explanation of the error. Error
messages can result from syntax errors and from computational errors. For
example, the following exec has a syntax error.

— Example of an Exec with a Syntax Error

[ek gk gk ek ok ok ok ok ok ok *x%x REXX #*drkkrsrrrsrrhrrsrrss Kkkkkkkkkkkkkkkk [
/* This is an interactive REXX exec that asks the user for a */
/* name and then greets the user with the name supplied. It */
/* contains a deliberate error. */

/******k******‘k******‘k******k‘k******k*k*****~k*'k*************************/

SAY "Hello! What's your name?"

PULL who /* Get the person's name.
IF who = '' THEN

SAY 'Hello stranger'
ELSE

SAY 'Hello' who

When the exec runs, you see the following on your screen:

Hello! What's your name?
7 +++ PULL who /* Get the person's name.IF who =
"' THEN SAY 'Hello stranger'ELSE SAY 'Hello' who
IRX00061 Error running REXX.EXEC(HELLO), line 7: Unmatched "/*" or quote

kK%

The exec runs until it detects the error, a missing */ at the end of the comment. As
a result, the SAY instruction displays the question, but doesn’t wait for your
response because the next line of the exec contains the syntax error. The exec
ends and the language processor displays error messages.

The first error message begins with the line number of the statement where the
error was detected, followed by three pluses (+++) and the contents of the
statement.

7 +++ PULL who /* Get the person's name.IF who =
"' THEN SAY 'Hello stranger'ELSE SAY 'Hello' who

The second error message begins with the message number followed by a
message containing the exec name, line where the error was found, and an
explanation of the error.

IRX0006I Error running REXX.EXEC(HELLO), Tine 7: Unmatched "/*" or quote

For more information about the error, you can go to the message explanations in

&/0S TSO/F Messaged, where information is arranged by message number.

To fix the syntax error in this exec, add */ to the end of the comment on line 7.
PULL who /* Get the person's name.*/

Chapter 2. Writing and Running a REXX Exec 19

Preventing Translation to Uppercase

Preventing Translation to Uppercase

As a rule, all alphabetic characters processed by the language processor are
translated to uppercase before they are processed. These alphabetic characters
can be from within an exec, such as words in a REXX instruction, or they can be
external to an exec and processed as input. You can prevent this translation to
uppercase in two ways depending on whether the characters are read as parts of
instructions from within an exec or are read as input to an exec.

From Within an Exec

To prevent translation of alphabetic characters to uppercase from within an exec,
simply enclose the characters in single or double quotation marks. Numbers and
special characters, whether or not in quotation marks, are not changed by the
language processor. For example, when you follow a SAY instruction with a phrase
containing a mixture of alphabetic characters, numbers, and special characters, only
the alphabetic characters are changed.

SAY The bill for lunch comes to $123.51!

results in:

[THE BILL FOR LUNCH COMES TO $123.51! j

Quotation marks ensure that information from within an exec is processed exactly
as typed. This is important in the following situations:

* For output when it must be lowercase or a mixture of uppercase and lowercase.

» To ensure that commands are processed correctly. For example, if a variable
name in an exec is the same as a command name, the exec ends in error when
the command is issued. It is good programming practice to avoid using variable
names that are the same as commands, but just to be safe, enclose all
commands in quotation marks.

As Input to an Exec

When reading input from a terminal or when passing input from another exec, the
language processor also changes alphabetic characters to uppercase before they
are processed. To prevent translation to uppercase, use the PARSE instruction.

For example, the following exec reads input from the terminal screen and
re-displays the input as output.

— Example of Reading and Re-displaying Input
/~k~k************************ REXX ***********************************/
/* This is an interactive REXX exec that asks a user for the name =/

/* of an animal and then re-displays the name. */
/********************************** """""""""""""""""" /

SAY "Please type in the name of an animal."
PULL animal /* Get the animal name.x/
SAY animal

If you responded to the example with the word tyrannosaurus, you would see on
your screen:

20 2/0S V1R2.0 TSO/E REXX User's Guide

Preventing Translation to Uppercase

(TYRANNOSAURUS)

To cause the language processor to read input exactly as it is presented, use the
PARSE PULL instruction.

PARSE PULL animal

Then if you responded to the example with TyRannOsauRus, you would see on
the screen:

(TyRannOsauRus)

Exercises - Running and Modifying the Example Execs

Write and run the preceding Example of Reading and Re-displaying Input. Try
various input and observe the output. Now change the PULL instruction to a PARSE
PULL instruction and observe the difference.

Passing Information to an Exec
When an exec runs, you can pass information to it in several ways, two of which
are:
* Through terminal interaction
» By specifying input when invoking the exec.

Using Terminal Interaction

The PULL instruction is one way for an exec to receive input as shown by a
previous example repeated here.

— Example of an Exec that Uses PULL
[rk Kk kkkkkkkkkkkkkkkkkkhkkrhk REXX *kkrhdkrhhhkrhhrrhhrrrhhrrhhrrrrrr/
/* This exec adds two numbers and displays their sum. */
[k gk ok kk ok dk ok k ok ok kR ok ok Rk ok Rk ko k ko k ok ok kok K Kkkkkkkkkkkhkkkkhkkhhkk [

SAY 'Please enter a number.'

PULL numberl

SAY 'Now enter a number to add to the first number.'

PULL number?2

sum = numberl + number2

SAY 'The sum of the two numbers is' sum'.'

The PULL instruction can extract more than one value at a time from the terminal
by separating a line of input, as shown in the following variation of the previous
example.

— Variation of an Example that Uses PULL

[xkFEkk Rk kkk Rk kk Rk kkkkkkrkhd REXX *hkkddkhrhhhrhhrrhhrrrhhrhrhrrrsrs/
/* This exec adds two numbers and displays their sum. */
p
/***/
SAY 'Please enter two numbers.'
PULL numberl number2
sum = numberl + number?2
SAY 'The sum of the two numbers is' sum'.'

Chapter 2. Writing and Running a REXX Exec 21

Passing Information to an Exec

Note: For the PULL instruction to extract information from the terminal, the data
stack must be empty. More information about the data stack appears in

n:hapKﬂ;11_jHQﬂngJnﬁMInanQnJnlheJDanljﬂaclen4x“¥Llaﬂ.

Specifying Values when Invoking an Exec

Another way for an exec to receive input is through values specified when you
invoke the exec. For example to pass two numbers to an exec named "add", using
the EXEC command, type:

C EXEC rexx.exec(add) '42 21' exec)

To pass input when running an exec implicitly, simply type values (words or
numbers) after the member name.

add 42 21

These values are called an argument. For information about arguments, see

The exec "add" uses the ARG instruction to assign the input to variables as shown
in the following example.

— Example of an Exec that Uses the ARG Instruction

[rk Kk kkkkkkkkkkkkkkkkkkkkkkhx REXX *dkkhshkrhhhkrhhkrhhrrrhhrhhhrrrrtr/
/* This exec receives two numbers as input, adds them, and */
/* displays their sum. */
/***/
ARG numberl number2

sum = numberl + number2

SAY 'The sum of the two numbers is' sum'.'

ARG assigns the first number, 42, to numberl and the second number, 21, to
numbera2.

If the number of values is fewer or more than the number of variable names after
the PULL or the ARG instruction, errors can occur as described in the following
sections.

Specifying Too Few Values
When you specify fewer values than the number of variables following the PULL or

ARG instruction, the extra variables are set to null. For example, you pass only one
number to "add".

C EXEC rexx.exec(add) '42' exec)

The first variable following the ARG instruction, numberl, is assigned the value 42.

The second variable, number2, is set to null. In this situation, the exec ends with an
error when it tries to add the two variables. In other situations, the exec might not

end in error.

Specifying Too Many Values

When you specify more values than the number of variables following the PULL or
ARG instruction, the last variable gets the remaining values. For example, you pass
three numbers to "add".

22 2/0S V1R2.0 TSO/E REXX User's Guide

Passing Information to an Exec

(EXEC rexx.exec(add) '42 21 10' exec)

The first variable following the ARG instruction, numberl, is assigned the value 42.
The second variable gets both '21 10'". In this situation, the exec ends with an error
when it tries to add the two variables. In other situations, the exec might not end in
error.

To prevent the last variable from getting the remaining values, use a period (.) at
the end of the PULL or ARG instruction.

ARG numberl number2 .

The period acts as a "dummy variable" to collect unwanted extra information. If
there is no extra information, the period is ignored. You can also use a period as a
place holder within the PULL or ARG instruction as follows:

ARG . numberl number2

In this case, the first value, 42, is discarded and numberl and number2 get the next
two values, 21 and 10.

Preventing Translation of Input to Uppercase

Like the PULL instruction, the ARG instruction changes alphabetic characters to
uppercase. To prevent translation to uppercase, precede ARG with PARSE as
demonstrated in the following example.

— Example of an Exec that Uses PARSE ARG

[xFk g kk kR kkkkkkk kR kkkkkkkrkhd REXX *ddkrdhdhkrhhhrhhrrhhrrrhhrrrrrrrsrs/

/* This exec receives the last name, first name, and score of */
/* a student and displays a sentence reporting the name and */
/* score. */
R R R R R 2 R Fkkkkkkkkkkkkkkk [

PARSE ARG Tastname firstname score
SAY firstname lastname 'received a score of' score'.'

Exercises - Using the ARG Instruction

The left column shows the input values sent to an exec. The right column is the
ARG statement within the exec that receives the input. What value does each
variable assume?

Input Variables Receiving Input

1. 115 -23 66 5.8 ARG first second third

2..2 0 569 2E6 ARG first second third fourth

3.1313 1313 ARG first second third fourth fifth

4. Weber Joe 91 ARG lastname firsthame score

5. Baker Amanda Marie 95 PARSE ARG lastname firsthame score
6. Callahan Eunice 88 62 PARSE ARG lastname firsthame score
ANSWERS

1. first = 115, second = -23, third = 66 5.8
2. first = .2, second = 0, third = 569, fourth = 2E6

Chapter 2. Writing and Running a REXX Exec 23

Passing Information to an Exec

3. first = 13, second = 13, third = 13, fourth = 13, fifth = null
4. lastname = WEBER, firsthame = JOE, score = 91

5. lastname = Baker, firsthame = Amanda, score = Marie 95
6. lastname = Callahan, firsthame = Eunice, score = 88

Passing Arguments

Values passed to an exec are usually called arguments. Arguments can consist of
one word or a string of words. Words within an argument are separated by blanks.
The number of arguments passed depends on how the exec is invoked.

Passing Arguments Using the CALL Instruction or REXX
Function Call

When you invoke a REXX exec using either the CALL instruction or a REXX
function call, you can pass up to 20 arguments to an exec. Each argument must be
separated by a comma.

Passing Arguments Using the EXEC Command

When you invoke a REXX exec either implicitly or explicitly using the EXEC
command, you can pass either one or no arguments to the exec. Thus the ARG
instruction in the preceding examples received only one argument. One argument
can consist of many words. The argument, if present, will appear as a single string.

If you plan to use commas within the argument string when invoking a REXX exec
using the EXEC command, special consideration must be given. For example, if
you specify:

GETARG 1,2

or

ex 'sam.rexx.exec(getarg)' '1,2'

the exec receives a single argument string consisting of "1,2”. The exec could then
use a PARSE ARG instruction to break the argument string into the
comma-separated values like the following:

PARSE ARG A ',' B

SAY 'A is ' A /* Will say 'A is 1' x/

SAY 'Bis ' B /x Will say 'B is 2' %/

However, because commas are treated as separator characters in TSO/E, you
cannot pass an argument string that contains a leading comma using the implicit
form of the EXEC command. That is, if you invoke the exec using:

GETARG ,2

the exec is invoked with an argument string consisting of "2". The leading comma
separator is removed before the exec receives control. If you need to pass an
argument string separated by commas and the leading argument is null (that is,
contains a leading comma), you must use the explicit form of the EXEC command.
For example:

ex 'sam.rexx.exec(getarg)' ',2'

In this case, the exec is invoked with an argument string consisting of ",2".

For more information about functions and subroutines, see tChapter 6 Writing
i ions” . For more information about arguments, see

24 2/0S V1R2.0 TSO/E REXX User's Guide

Chapter 3. Using Variables and Expressions

Using Variables.25
Variable Names .26
Variable Values. . . . Y
Exercises - ldentifying VaIrd Varlable Names 2 4

Using Expressions .28
Arithmetic Operators. .28

Division . . . e e e e 29
Order of Evaluatlon . C e e e e 29
Using Arithmetic Expressmns .o R [0
Exercises - Calculating Arithmetic Expressmns R [0
Comparison Operators . . . N [0
The Strictly Equal and Equal Operators 1
Using Comparison Expressions. . . . e e e 3t
Exercises - Using Comparison Expressrons T 724
Logical (Boolean) Operators8
Using Logical Expressions. . . e e33
Exercises - Using Logical Expressrons v
Concatenation Operators .34
Using Concatenation Operators.34
Priority of Operators . . . N 1)
Exercises - Priority of Operators Co . e36

Tracing Expressions with the TRACE Instructlon <
Tracing Operations ..%8
Tracing Results. . . . G <

Exercises - Using the TRACE Instruct|on e e38

This chapter describes variables, expressions, and operators, and explains how to
use them in REXX execs.

One of the most powerful aspects of computer programming is the ability to process
variable data to achieve a result. The variable data could be as simple as two
numbers, the process could be subtraction, and the result could be the answer.

answer = numberl - number?2

Or the variable data could be input to a series of complex mathematical
computations that result in a 3-dimensional animated figure.

Regardless of the complexity of a process, the premise is the same. When data is
unknown or if it varies, you substitute a symbol for the data, much like the "x" and

y" in an algebraic equation.
Xx=y+29

The symbol, when its value can vary, is called a variable. A group of symbols or
numbers that must be calculated to be resolved is called an expression.

Using Variables

A variable is a character or group of characters that represents a value. A variable
can contain either single- or double-byte characters, or a combination of single- and
double-byte characters. (Double-byte characters are valid only if you include
OPTIONS ETMODE as the first instruction of your exec.) The following variable big
represents the value one million or 1,000,000.

© Copyright IBM Corp. 1988, 2001 25

Using Variables
big = 1000000

Variables can refer to different values at different times. If you assign a different
value to big, it gets the value of the new assignment, until it is changed again.

big = 999999999

Variables can also represent a value that is unknown when the exec is written. In
the following example, the user's name is unknown, so it is represented by the
variable who.

SAY "Hello! What's your name?"

PARSE PULL who /* Put the person's name in the variable "who" %/

Variable Names

A variable name, the part that represents the value, is always on the left of the
assignment statement and the value itself is on the right. In the following example,
the word "variable1" is the variable name:

variablel = 5
SAY variablel

As a result of the above assignment statement, variablel is assigned the value "5,
and you see on the terminal screen:

e)

Variable names can consist of:

A..Z uppercase alphabetic

a..z lowercase alphabetic

0...9 numbers

@#$¢?!)._ special characters

X'41' ... X'FE' double-byte character set (DBCS) characters.

(ETMODE must be on for these characters to be
valid in a variable name.)

Restrictions on the variable name are:
» The first character cannot be 0 through 9 or a period (.)
» The variable name cannot exceed 250 bytes. For names containing DBCS

characters, count each DBCS character as two bytes, and count the shift-out
(SO) and shift-in (SI) as one byte each.

» DBCS characters within a DBCS name must be delimited by SO (X'OE') and Sl
(X'OF"). Also note that:
— SO and Sl cannot be contiguous.
— Nesting of SO / Sl is not permitted.
— A DBCS name cannot contain a DBCS blank (X'4040'").

» The variable name should not be RC, SIGL, or RESULT, which are REXX special
variables. More about special variables appears later in this book.

Examples of acceptable variable names are:
ANSWER 7988 X Word3 number the_ultimate_value

26 2/0S V1R2.0 TSO/E REXX User's Guide

Using Variables

Also, if ETMODE is set on, the following are valid DBCS variable names, where <
represents shift-out, and > represents shift-in, *.X’, .Y’, and “.Z’ represent DBCS
characters, and lowercase letters and numbers represent themselves.

<.X.Y.Z> number <.X.Y.Z> <.X.Y>1234<.Z>

Variable Values
The value of the variable, which is the value the variable name represents, might be
categorized as follows:

* A constant, which is a number that is expressed as:
An integer (12)
A decimal (12.5)
A floating point number (1.25E2)
A signed number (-12)
A string constant (* 12')

» A string, which is one or more words that may or may not be enclosed in
quotation marks, such as:

This value is a string.
'This value is a literal string.'

¢ The value from another variable, such as:
variablel = variable2

In the above example, variablel changes to the value of variable2, but
variable2 remains the same.

* An expression, which is something that needs to be calculated, such as:
variable2 = 12 + 12 - .6 /* variable2 becomes 23.4 */

Before a variable is assigned a value, the variable displays the value of its own
name translated to uppercase. In the following example, if the variable new was not
assigned a previous value, the word "NEW" is displayed.

SAY new /* displays NEW */

Exercises - Identifying Valid Variable Names
Which of the following are valid REXX variable names?

1. 8eight

2. $25.00

3. MixedCase

4. nine_to_five

5. result

ANSWERS

1. Invalid, because the first character is a number
2. Valid

3. Valid

4. Valid

5. Valid, but it is a reserved variable name and we recommend that you use it only

to receive results from a subroutine

Chapter 3. Using Variables and Expressions 27

Using Expressions

Using Expressions

An expression is something that needs to be calculated and consists of numbers,
variables, or strings, and one or more operators. The operators determine the kind
of calculation to be done on the numbers, variables, and strings. There are four
types of operators: arithmetic, comparison, logical, and concatenation.

Arithmetic Operators

Arithmetic operators work on valid numeric constants or on variables that represent
valid numeric constants.

Types of Numeric Constants

12

12,5

1.25E2

A whole number has no decimal point or commas. Results of
arithmetic operations with whole numbers can contain a maximum
of nine digits unless you override the default with the NUMERIC
DIGITS instruction. For information about the NUMERIC DIGITS
instruction, see lzZ0S TSO/E REXX Referencd. Examples of whole
numbers are: 123456789 0 91221 999

A decimal number includes a decimal point. Results of arithmetic
operations with decimal numbers are limited to a total maximum of
nine digits (NUMERIC DIGITS default) before and after the
decimal. Examples of decimal numbers are: 123456.789
0.888888888

A floating point number in exponential notation, is sometimes
called scientific notation. The number after the "E" represents the
number of places the decimal point moves. Thus 1.25E2 (also
written as 1.25E+2) moves the decimal point to the right two places
and results in 125. When an "E" is followed by a minus (-), the
decimal point moves to the left. For example, 1.25E-2 is .0125.

Floating point numbers are used to represent very large or very
small numbers. For more information about floating point numbers,

see [0S TSO/F REXX Referenca.

A signed number with a minus (-) next to the number represents a
negative value. A plus next to a number indicates that the number
should be processed as it is written. When a number has no sign, it
is processed as a positive value.

The arithmetic operators you can use are as follows:

Operator

+

*

/

%

Vi
-number

+number

28 2/0S V1R2.0 TSO/E REXX User's Guide

Meaning

Add

Subtract

Multiply

Divide

Divide and return a whole number without a remainder
Divide and return the remainder only

Raise a number to a whole number power

Negate the number

Add the number to O

Using Expressions

Using numeric constants and arithmetic operators, you can write arithmetic
expressions as follows:

7+2 /* result is 9 */

7 -2 /* result is 5 */

7 x 2 /* result is 14 %/

7 *% 2 /* result is 49 =/

7 x*x 2.5 /* result is an error =/
Division

Notice that three operators represent division. Each operator displays the result of a
division expression in a different way.

/ Divide and express the answer possibly as a decimal number. For example:
7172 /* result is 3.5 %/
6/ 2 /* result is 3 */

% Divide and express the answer as a whole number. The remainder is
ignored. For example:
7% 2 /* result is 3 */

/i Divide and express the answer as the remainder only. For example:
7112 /* result is 1 */

Order of Evaluation
When you have more than one operator in an arithmetic expression, the order of

numbers and operators can be critical. For example, in the following expression,
which operation does the language processor perform first?

7+2%(9/3)-1

Proceeding from left to right, it is evaluated as follows:
» Expressions within parentheses are evaluated first.

» Expressions with operators of higher priority are evaluated before expressions
with operators of lower priority.

Arithmetic operator priority is as follows, with the highest first:

— Arithmetic Operator Priority
-+ Prefix operators
* Power (exponential)
I % Il Multiplication and division
+ - Addition and subtraction

Thus the preceding example would be evaluated in the following order:
1. Expression in parentheses
7+2%(9/3)-1

_/

3

2. Multiplication
7+2+%3-1

__/
6
3. Addition and subtraction from left to right

7+6-1=12

Chapter 3. Using Variables and Expressions 29

Using Expressions

Using Arithmetic Expressions

You can use arithmetic expressions in an exec many different ways. The following
example uses several arithmetic operators to round and remove extra decimal
places from a dollar and cents value.

— Example Using Arithmetic Expressions

[Fk Kk kk ko kkkkkkkkkkkkkkhhkkhhkk REXX #dhdkrdhdhhkrhkhsrhkhhrhhhrhhstrkrs ks /
/* This exec computes the total price of an item including sales =*/
/* tax rounded to two decimal places. The cost and percent of the x/
/* tax (expressed as a decimal number) are passed to the exec when x/
/* it is run. */
/***/

PARSE ARG cost percent_tax

total = cost + (cost * percent_tax) /* Add tax to cost. */
price = ((total * 100 + .5) % 1) / 100 /* Round and remove */

/* extra decimal places.x*/
SAY 'Your total cost is $'price'.’

Exercises - Calculating Arithmetic Expressions
1. What will the following program display on the screen?

Exercise
[FxFk kxR Rk kR Rk Rk Rk kkkkkkrkhhd REXX H*kkhdhdkdhhdhhkrhhhrhhrrhhrrrsss/

pa =1

ma =1

kids = 3

SAY "There are" pa + ma + kids "people in this family."

2. What is the value of:

a. 6-4+1
b. 6-(4+1)
C. 6*4+2
d. 6*@4+2)
e. 24%5/2

ANSWERS

1. There are 5 people in this family.
2. The values are as follows:

a. 3
b. 1
c. 26
d. 36
e. 2

Comparison Operators

Expressions that use comparison operators do not return a number value as do
arithmetic expressions. Comparison expressions return either a true or false
response in terms of 1 or 0 as follows:

1 True

0 False

30 2/0S V1R2.0 TSO/E REXX User's Guide

Using Expressions

Comparison operators can compare numbers or strings and ask questions, such as:
Are the terms equal? (A =B)
Is the first term greater than the second? (A > B)
Is the first term less than the second? (A < B)

For example, if A =4 and B = 3, then the results of the previous comparison
questions are:

(A =B) Does 4 = 3? 0 (False)
(A>B)Is4>3? 1 (True)
(A<B)Is4<3? 0 (False)

The more commonly used comparison operators are as follows:
Operator Meaning

== Strictly Equal

= Equal

\ == Not strictly equal

\ = Not equal

> Greater than

< Less than

>< Greater than or less than (same as not equal)
> = Greater than or equal to

\< Not less than

<= Less than or equal to

\ > Not greater than

Note: The not character, "-", is synonymous with the backslash ("\"). The two
characters may be used interchangeably according to availability and
personal preference. This book uses the backslash ("\") character.

The Strictly Equal and Equal Operators
When two expressions are strictly equal, everything including the blanks and case
(when the expressions are characters) is exactly the same.

When two expressions are equal, they are resolved to be the same. The following
expressions are all true.

'"WORD' = word /* returns 1 %/
'word ' \== word /* returns 1 %/
'word' == 'word' /* returns 1 %/
4e2 \== 400 /* returns 1 */
4e2 \= 100 /* returns 1 %/

Using Comparison Expressions
Often a comparison expression is used in IF/THEN/ELSE instructions. The following
example uses an IF/THEN/ELSE instruction to compare two values. For more

information about this instruction, see EIE/THEN/ELSE Instructions” on page 42,

Chapter 3. Using Variables and Expressions 31

Using Expressions

— Example Using A Comparison Expression

[FHrk gk rk Rk kR kR Rk Rk Rk Rk Rk krhrxkx REXX *kdhsrhdhdhrhsmrhrhhrhrrhrhmrrsrs/

/* This exec compares what you paid for lunch for two */
/* days in a row and then comments on the comparison. */
/*** *k*k *k*k *k*k * /

SAY 'What did you spend for lunch yesterday?'
SAY 'Please do not include the dollar sign.'

PARSE PULL last

SAY 'What did you spend for lunch today?'
SAY 'Please do not include the dollar sign.'

PARSE PULL Tunch

IF Tunch > Tast THEN /* lunch cost increased */
SAY "Today's Tunch cost more than yesterday's."

ELSE /* Tunch cost remained the same or decreased */
SAY "Today's Tunch cost the same or less than yesterday's."

Exercises - Using Comparison Expressions

1. In the preceding example of using a comparison expression, what appears on
the screen when you respond to the prompts with the following lunch costs?

Yesterday’s Lunch Today’s Lunch
4.42 3.75
3.50 3.50
3.75 4.42

2. What is the result (0 or 1) of the following expressions?
a. "Apples” = "Oranges”
b. " Apples” = "Apples”
c. " Apples” == "Apples”
d. 100 = 1E2
e. 100 \=1E2
f. 100 \== 1E2

ANSWERS

1. The following sentences appear.
a. Today’s lunch cost the same or less than yesterday’s.
b. Today’s lunch cost the same or less than yesterday’s.
c. Today’s lunch cost more than yesterday’s.

2. The expressions result in the following. Remember 0 is false and 1 is true.

(The first ” Apples” has a space.)

"0 Qo0To
‘o0 -—-0

Logical (Boolean) Operators

Logical expressions, like comparison expressions, return a true (1) or false (0) value
when processed. Logical operators combine two comparisons and return the true
(1) or false (0) value depending on the results of the comparisons.

32 2/0S Vi1R2.0 TSO/E REXX User's Guide

Using Expressions

The logical operators are:

Operator Meaning

& AND
Returns 1 if both comparisons are true. For example:
(4>2) & (a=a) /*true, so result is 1 =/
(2>4) & (a=a) [+ false, so result is 0 %/

I Inclusive OR

Returns 1 if at least one comparison is true. For example:
(4>2) | (5=3) /xat least one is true, so result is 1 */

(2>4) | (5=3) /* neither one is true, so result is 0 =/
&& Exclusive OR

Returns 1 if only one comparison (but not both) is true. For

example:
(4 >2) & (5 = 3) /* only one is true, so result is 1 %/
(4 >2) & (5 = 5) /* both are true, so result is 0 =/

(2 >4) & (5 = 3) /* neither one is true, so result is 0 %/

Prefix \ Logical NOT
Returns the opposite response. For example:
\ 0 /* opposite of 0, so result is 1 */
\ (4 >2) /* opposite of true, so result is 0 */

Using Logical Expressions
Logical expressions are used in complex conditional instructions and can act as
checkpoints to screen unwanted conditions. When you have a series of logical

expressions, for clarification, use one or more sets of parentheses to enclose each

expression.
IF ((A<B) | (J<D)) & ((M=20Q) | (M=0D)) THEN ...

The following example uses logical operators to make a decision.

— Example Using Logical Expressions
[Fk g kk ko kkkkkkkkkkkkkkkhkkhhx REXX #krhkkx * %Kk * *********/
/* This exec receives arguments for a complex logical expression */
/* that determines whether a person should go skiing. The first */

/* argument is a season and the other two can be 'yes' or 'no'. */
/***/

PARSE ARG season snowing broken_leg

IF ((season = 'winter') | (snowing ='yes')) & (broken leg ='no')
THEN SAY 'Go skiing.'

ELSE
SAY 'Stay home.'

When arguments passed to this example are "spring yes no", the IF clause
translates as follows:

Chapter 3. Using Variables and Expressions

33

Using Expressions

Concatenation

IF ((season = 'winter') | (snowing ='yes')) & (broken leg ='no') THEN
\ / \ / \ /
false true true
\ / /
true /
\ /

true

As a result, when you run the exec, you see the message:
(: Go skiing. :)

Exercises - Using Logical Expressions
A student applying to colleges has decided to pick ones according to the following
specifications:
IF (inexpensive | scholarship) & (reputable | nearby) THEN
SAY "I'11 consider it."

ELSE
SAY "Forget it!"

A college is inexpensive, did not offer a scholarship, is reputable, but is over 1000
miles away. Should the student apply?

ANSWER

Yes. The conditional instruction works out as follows:
IF (inexpensive | scholarship) & (reputable | nearby) THEN ...
\

!\ /\ !\ /
true false true false
\ / \ /
true true
\ /
true
Operators

Concatenation operators combine two terms into one. The terms can be strings,
variables, expressions, or constants. Concatenation can be significant in formatting
output.

The operators that indicate how to join two terms are as follows:

Operator Meaning

blank Concatenate terms and place one blank in between. Terms that are
separated by more than one blank default to one blank when read.
For example:
SAY true blue /* result is TRUE BLUE x/

Il Concatenate terms and place no blanks in between. For example:

(87 2)]1(3 3) /* result is 49 */
abuttal Concatenate terms and place no blanks in between. For example:
per_cent'%’ /* if per_cent = 50, result is 50% =/

Using Concatenation Operators
One way to format output is to use variables and concatenation operators as in the
following example. A more sophisticated way to format information is with parsing

and templates. Information about parsing appears in lParsing Data” on page 87.

34 2/0S Vi1R2.0 TSO/E REXX User's Guide

Using Expressions

— Example using Concatenation Operators

/****************************** REXX sk kkkdkkkhkkkhhhrkhhrrhhhrrrsrr/
/* This exec formats data into columns for output. */
/***/
sport = 'base'
equipment = 'ball'
1

column = !
cost = 5

SAY sport||equipment column '$' cost

The result of this example is:

(baseball $5)

Priority of Operators

When more than one type of operator appears in an expression, what operation
does the language processor do first?

IF (A > 7++B) & (B < 3) | (A||B =C) THEN ...

Like the priority of operators within the arithmetic operators, there is an overall
priority that includes all operators. The priority of operators is as follows with the
highest first.

— Overall Operator Priority

\or--+ Prefix operators

** Power (exponential)
1% I Multiply and divide
+ - Add and subtract

blank Il abuttal Concatenation operators
== =>< etc. Comparison operators
& Logical AND

| && Inclusive OR and exclusive OR

Thus the previous example presented again below:
IF (A > 7++B) & (B < 3) | (A||B =C) THEN ...

given the following values:

A=8
B=2
c=10

would be evaluated as follows:
1. Convert variables to values

IF (8 > 7%%2) & (2 < 3) | (8]]|2 = 10) THEN ...
2. Compute operations of higher priority within parentheses

Chapter 3. Using Variables and Expressions 35

Using Expressions

* Exponential operation

IF (8 > 7+%2) & (2 < 3) | (8]|2 = 10) THEN ...
__/
49
» Concatenation operation
IF (8 >49) & (2 <3) | (8]|2 = 10) THEN ...
__/
82
3. Compute all operations within parentheses from left to right
IF (8 > 49) & (2 <3) | (82 =10) THEN ...
__/ __/ \ /

0 1 0
4. Logical AND
o & 1 | 0
\ /
0
5. Inclusive OR
0 | 0
\ /
]

Exercises - Priority of Operators

1. What are the answers to the following examples?
a. 22+ (12*1)
b. -6/-2>45%7/2)-1
c. 10*2-(5+1)/5*2+15-1

2. In the example of the student and the college from LExercises - lsing | agical
Expressions” on page 34, if the parentheses were removed from the student’s

formula, what would be the outcome for the college?

IF inexpensive | scholarship & reputable | nearby THEN
SAY "I'1T1 consider it."

ELSE
SAY "Forget it!"

Remember the college is inexpensive, did not offer a scholarship, is reputable,
but is 1000 miles away.

ANSWERS
1. The results are as follows:
a. 34 (22 + 12 = 34)
b. 1 (true) (3>3-1)
c. 32 (20-2+15-1)
2. I'll consider it.

The & operator has priority, as follows, but the outcome is the same as the
previous version with the parentheses.

IF inexpensive | scholarship & reputable | nearby THEN

/\ /\ /! \ /
true false true false
\ \ / /
\ false /
\ / /
true /
\ /
true

36 2/0S Vi1R2.0 TSO/E REXX User's Guide

Tracing Expressions with the TRACE Instruction

Tracing Expressions with the TRACE Instruction

You can use the TRACE instruction to display how the language processor
evaluates each operation of an expression as it reads it, or to display the final result
of an expression. These two types of tracing are useful for debugging execs.

Tracing Operations

To trace operations within an expression, use the TRACE | (TRACE Intermediates)
form of the TRACE instruction. All expressions that follow the instruction are then
broken down by operation and analyzed as:

>V> - Variable value - The data traced is the contents
of a variable.

> > - Literal value - The data traced is a literal
(string, uninitialized variable, or constant).
>0> - Operation result - The data traced is the result

of an operation on two terms.

The following example uses the TRACE | instruction.

/EDIT ---- USERID.REXX.EXEC(SAMPLE) ===--mmmmmmmmm e COLUMNS 009 080)
COMMAND ===> SCROLL ===> HALF
TOP OF DATA
000001 / REXX /
000002 /* This exec uses the TRACE instruction to show how an */
000003 /* expression is evaluated, operation by operation. */
000004 / */
000005 x =9
000006 y = 2
000007 TRACE I
000008
000009 IF x + 1 > 5 * y THEN
000010 SAY 'x is big enough.'
000011 ELSE NOP /* No operation on the ELSE path */
BOTTOM OF DATA
N\ %

When you run the example, you see on your screen:

9 *-x IF x+1>5=*y

>\V> ngn
NES npn
>0> LR
NES ngn
S\> non
>0> "
>0> ngn

First you see the line number (9 *-x) followed by the expression. Then the
expression is broken down by operation as follows:

>y> g (value of variable x)

> > "t (value of Titeral 1)

>0> "10" (result of operation x + 1)

>> 5" (value of Titeral 5)

>y> g (value of variable y)

>0> "10" (result of operation 5 * y)

>0> "o" (result of final operation 10 > 10 is false)

Chapter 3. Using Variables and Expressions 37

Tracing Expressions with the TRACE Instruction

Tracing Results

To trace only the final result of an expression, use the TRACE R (TRACE Results)
form of the TRACE instruction. All expressions that follow the instruction are
analyzed and the results are displayed as:

(}>> Final result of an expression :)

If you changed the TRACE instruction operand in the previous example from an | to
an R, you would see the following results.

9 *x-x [F x + 1>5=*y
>>> n 0 n

In addition to tracing operations and results, the TRACE instruction offers other
types of tracing. For information about the other types of tracing with the TRACE
instruction, see /0S8 TSQ/E REXX Referencd

Exercises - Using the TRACE Instruction
Write an exec with a complex expression, such as:

IF (A>B) | (C<2 D) THEN ...

Define A, B, C, and D in the exec and use the TRACE | instruction.

ANSWER

— Possible Solution

/****************************** REXX *******************************/
/* This exec uses the TRACE instruction to show how an expression */

/* is evaluated, operation by operation. */
R R R T T A /
A=1

B =2

=3

D=4

TRACE I

IF (A>B) | (C <2 * D) THEN

SAY 'At least one expression was true.'
ELSE

SAY 'Neither expression was true.'

When this exec is run, you see the following:

38 2/0S V1R2.0 TSO/E REXX User's Guide

Tracing Expressions with the TRACE Instruction

/12*—*IF(A>B)|(C<2*D))
S>y> e
>V> II2II
>0> IIGII
>V> II3II
>L> II2II
>V> II4II
>0> II8II
>0> "
>0> II1II
*-% THEN

13 *-x SAY 'At least one expression was true.'
>|> "At Teast one expression was true."

At least one expression was true. Y

Chapter 3. Using Variables and Expressions 39

Tracing Expressions with the TRACE Instruction

40 2/0S V1R2.0 TSO/E REXX User's Guide

Chapter 4. Controlling the Flow Within an Exec

Using Conditional Instructions
IF/THEN/ELSE Instructions
Nested IF/THEN/ELSE Instructions . . .
Exercise - Using the IF/THEN/ELSE Instruc‘uon
SELECT/WHEN/OTHERWISE/END Instruction .

Exercises - Using the SELECT/\NHEN/OTHERWISE/END Instructlon .

Using Looping Instructions
Repetitive Loops .
Infinite Loops .o
DO FOREVER Loops
LEAVE Instruction. .
ITERATE Instruction .
Exercises - Using Loops
Conditional Loops .
DO WHILE Loops. . .
Exercise - Using a DO WHILE Loop
DO UNTIL Loops . .
Exercise - Using a DO UNTIL Loop
Combining Types of Loops
Nested DO Loops .
Exercises - Combining Loops
Using Interrupt Instructions
EXIT Instruction
CALL/RETURN Instructlons .
SIGNAL Instruction

This chapter introduces instructions that alter the sequential execution of an exec

and demonstrates how those instructions are used.

Generally when an exec runs, one instruction after another executes, starting with
the first and ending with the last. The language processor, unless told otherwise,

executes instructions sequentially.

You can alter the order of execution within an exec by using specific REXX
instructions that cause the language processor to skip some instructions, repeat
others, or jump to another part of the exec. These specific REXX instructions can

be classified as follows:

» Conditional instructions, which set up at least one condition in the form of an
expression. If the condition is true, the language processor selects the path

. 42
. 42
. 43
. 44
. 44
. 46
. 47
. 47
. 48
. 49
. 50
. 50
. 51
. 52
. 52
. 53
. 53
. 54
. 55
. 55
. 56
. 56
. 57
. 57
. 58

following that condition. Otherwise the language processor selects another path.

The REXX conditional instructions are:
IF expression/THEN/ELSE
SELECT/WHEN expression/OTHERWISE/END.

» Looping instructions, which tell the language processor to repeat a set of
instructions. A loop can repeat a specified number of times or it can use a

condition to control repeating. REXX looping instructions are:
DO expression/END
DO FOREVER/END
DO WHILE expression=true/END
DO UNTIL expression=true/END

© Copyright IBM Corp. 1988, 2001

41

Controlling the Flow Within an Exec

* Interrupt instructions, which tell the language processor to leave the exec entirely
or leave one part of the exec and go to another part, either permanently or
temporarily. The REXX interrupt instructions are:

EXIT
SIGNAL /abel
CALL label/RETURN

Using Conditional Instructions

There are two types of conditional instructions. IF/THEN/ELSE can direct the
execution of an exec to one of two choices. SELECT/WHEN/OTHERWISE/END can
direct the execution to one of many choices.

IF/ THEN/ELSE Instructions

The examples of IF/THEN/ELSE instructions in previous chapters demonstrated the
two-choice selection. In a flow chart, this appears as follows:

IF
False . True
expression
ELSE THEN
instruction instruction

v

As a REXX instruction, the flowchart example looks like:

IF expression THEN instruction
ELSE instruction

You can also arrange the clauses in one of the following ways to enhance
readability:
IF expression THEN
instruction
ELSE
instruction

or

IF expression
THEN
instruction
ELSE
instruction

When you put the entire instruction on one line, you must separate the THEN
clause from the ELSE clause with a semicolon.

IF expression THEN instruction; ELSE instruction
Generally, at least one instruction should follow the THEN and ELSE clauses. When

either clause has no instructions, it is good programming practice to include NOP
(no operation) next to the clause.

42 2/0S V1R2.0 TSO/E REXX User's Guide

Using Conditional Instructions

IF expression THEN
instruction
ELSE NOP

If you have more than one instruction for a condition, begin the set of instructions
with a DO and end them with an END.

IF weather = rainy THEN
SAY 'Find a good book.'
ELSE
DO
SAY 'Would you Tike to play tennis or golf?'
PULL answer
END

Without the enclosing DO and END, the language processor assumes only one
instruction for the ELSE clause.

Nested IF/THEN/ELSE Instructions

Sometimes it is necessary to have one or more IF/THEN/ELSE instructions within
other IF/THEN/ELSE instructions. Having one type of instruction within another is

called nesting. With nested IF instructions, it is important to match each IF with an
ELSE and each DO with an END.

IF weather = fine THEN
DO
SAY 'What a lovely day!'
IF tenniscourt = free THEN
SAY 'Shall we play tennis?'
ELSE NOP
END
ELSE
SAY 'Shall we take our raincoats?'

Not matching nested IFs to ELSEs and DOs to ENDs can have some surprising
results. If you eliminate the DOs and ENDs and the ELSE NOP, as in the following
example, what is the outcome?

— Example of Missing Instructions

[Kk kg ko ok ok ok ok k ok ok k ok ke k ok kR s% REXX #kkkkkkrrhhkhkhkhhhkkrrrrkhkhkk *%/
/* This exec demonstrates what can happen when you do not include =*/
/* DOs, ENDs, and ELSEs in nested IF/THEN/ELSE instructions. %/

/***/
weather = 'fine'
tenniscourt = 'occupied'

IF weather = 'fine' THEN
SAY 'What a lovely day!'
IF tenniscourt = 'free' THEN
SAY 'Shall we play tennis?'
ELSE
SAY 'Shall we take our raincoats?'

By looking at the exec you might assume the ELSE belongs to the first IF. However,
the language processor associates an ELSE with the nearest unpaired IF. The
outcome is as follows:

What a Tovely day!
Shall we take our raincoats?

Chapter 4. Controlling the Flow Within an Exec 43

Using Conditional Instructions

Exercise - Using the IF/THEN/ELSE Instruction
Write the REXX instructions for the following flowchart:

IF
False True
‘4 A=O
IF IF
False True
> False True
IF
False True
- > B=1
A=3 A=1

<—

ANSWER

— Possible Solution

IF A = 0 THEN
IF C = 2 THEN
B=1
ELSE NOP
ELSE
IF B =
IF C
A
ELSE
A=3
ELSE NOP

THEN
3 THEN

nnmN

SELECT/WHEN/OTHERWISE/END Instruction

To select one of any number of choices, use the
SELECT/WHEN/OTHERWISE/END instruction. In a flowchart it appears as follows:

44 2/0S Vi1R2.0 TSO/E REXX User's Guide

Using Conditional Instructions

SELECT Y
THEN
WHEN True
. instruction
False
THEN
WHEN True
—> instruction >
False
WHEN THEN
True
—> instruction >
False
OTHERWISE
»| instruction(s) >

END ¢

As a REXX instruction, the flowchart example looks like:

SELECT
WHEN expression THEN instruction
WHEN expression THEN instruction
WHEN expression THEN instruction

OTHERWISE
instruction(s)
END

The language processor scans the WHEN clauses starting at the beginning until it
finds a true expression. After it finds a true expression, it ignores all other
possibilities, even though they might also be true. If no WHEN expressions are true,
it processes the instructions following the OTHERWISE clause.

As with the IF/THEN/ELSE instruction, when you have more than one instruction for
a possible path, begin the set of instructions with a DO and end them with an END.
However, if more than one instruction follows the OTHERWISE keyword, DO and
END are not necessary.

Chapter 4. Controlling the Flow Within an Exec 45

Using Conditional Instructions

— Example Using SELECT/WHEN/OTHERWISE/END

[FHrk gk kk Rk kAR IRk Rk R Rk R Rk Rk R x*kx REXX #hdrhdhdhrhshrhthhrhrrhrhmrrsrs/

/* This exec receives input with a person's age and sex. In */
/* reply it displays a person's status as follows: */
/* BABIES - under 5 */
/* GIRLS - female 5 to 12 */
/* BOYS - male 5 to 12 */
/* TEENAGERS - 13 through 19 */
/* WOMEN - female 20 and up */
/* MEN - male 20 and up */

/***/

PARSE ARG age sex .

SELECT
WHEN age < 5 THEN /* person younger than 5 */
status = 'BABY'
WHEN age < 13 THEN /* person between 5 and 12 */
DO
IF sex = 'M' THEN /* boy between 5 and 12 */
status = 'BOY'
ELSE /* girl between 5 and 12 */
status = 'GIRL'
END
WHEN age < 20 THEN /* person between 13 and 19 */
status = 'TEENAGER'
OTHERWISE
IF sex = 'M' THEN /* man 20 or older */
status = 'MAN'
ELSE /* woman 20 or older */

status = 'WOMAN'
END

SAY 'This person should be counted as a' status '.'

Each SELECT must end with an END. Indenting each WHEN makes an exec
easier to read.

Exercises - Using the SELECT/WHEN/OTHERWISE/END

Instruction
"Thirty days hath September, April, June, and November; all the rest have

thirty-one, save February alone ..."

Write an exec that provides the number of days in a month. First have the exec ask
the user for a month specified as a number from 1 to 12 (with January being 1,
February 2, and so forth). Then have the exec reply with the number of days. For
month "2", the reply can be "28 or 29".

ANSWER

46 2/0S V1R2.0 TSO/E REXX User's Guide

Using Conditional Instructions

— Possible Solution

[FHrk kR kR kIR IR R ER IR R R FE*Fx*Ex REXX *hdkhkhdhrhrkhrhhrhrrhrhrrrsrs/
/* This exec requests the user to enter a month as a whole number =*/
/* from 1 to 12 and responds with the number of days in that */
/* month. */

/***/

SAY 'To find out the number of days in a month,'
SAY 'Enter the month as a number from 1 to 12.'
PULL month

SELECT
WHEN month = 9 THEN
days = 30
WHEN month = 4 THEN
days = 30
WHEN month = 6 THEN
days = 30
WHEN month = 11 THEN
days = 30
WHEN month = 2 THEN
days = '28 or 29'
OTHERWISE
days = 31
END

SAY 'There are' days 'days in Month' month '.'

Using Looping Instructions

There are two types of looping instructions, repetitive loops and conditional
loops. Repetitive loops allow you to repeat instructions a certain number of times,
and conditional loops use a condition to control repeating. All loops, regardless of
the type, begin with the DO keyword and end with the END keyword.

Repetitive Loops
The simplest loop tells the language processor to repeat a group of instructions a
specific number of times using a constant following the keyword DO.

DO 5
SAY 'Hello!'
END

When you run this example, you see five lines of Hello!.

Hello!
Hello!
Hello!
Hello!
Hello!

You can also use a variable in place of a constant as in the following example,
which gives you the same results.

number = 5

DO number

SAY 'Hello!'
END

Chapter 4. Controlling the Flow Within an Exec 47

Using Looping Instructions

A variable that controls the number of times a loop repeats is called a control
variable. Unless you specify otherwise, the control variable increases by 1 each
time the loop repeats.

DO number =1 TO 5
SAY 'Loop' number
SAY 'Hello!'
END
SAY 'Dropped out of the Toop when number reached' number

This example results in five lines of Hello! preceded by the number of the loop.

The number increases at the bottom of the loop and is tested at the top.
4 Loop 1 h
Hello!

Loop 2

Hello!

Loop 3

Hello!

Loop 4

Hello!

Loop 5

Hello!

Dropped out of the loop when number reached 6

- v

You can change the increment of the control variable with the keyword BY as
follows:

DO number = 1 TO 10 BY 2
SAY 'Loop' number
SAY 'Hello!'
END
SAY 'Dropped out of the Toop when number reached' number

This example has results similar to the previous example except the loops are
numbered in increments of two.

4 Loop 1 h
Hello!

Loop 3

Hello!

Loop 5

Hello!

Loop 7

Hello!

Loop 9

Hello!

Dropped out of the loop when number reached 11

-

Infinite Loops
What happens when the control variable of a loop cannot attain the last number?

For example, in the following exec segment, count does not increase beyond 1.
DO count = 1 to 10
SAY 'Number' count

count = count - 1
END

The result is called an infinite loop because count alternates between 1 and 0 and
an endless number of lines saying Number 1 appear on the screen.

48 2/0S Vi1R2.0 TSO/E REXX User's Guide

Using Looping Instructions

— IMPORTANT - Stopping An Infinite Loop

When you suspect an exec is in an infinite loop, you can end the exec by
pressing the attention interrupt key, sometimes labeled PA1. You will then see
message IRX0920I. In response to this message, type HI for halt interpretation
and press the Enter key. If that doesn’t stop the loop, you can press the
attention interrupt key again, type HE for halt execution, and press the Enter
key.

HI will not halt an infinitely looping or long running external function, subroutine, or
host command written in a language other than REXX and that was called by your
exec. The HI condition is not checked by the REXX interpreter until control returns
from the function, subroutine, or host command.

— Example of EXEC1, an exec that calls an external function

[xxFExk kR Rk kk Rk kkxkkkx REXX #xkdhdkdhhhhhhhhrhhhrhhhrhhrrhhhrhhhrrrsrs/

/* Invoke a user-written external function, 'myfunct'. */
/* not written in REXX. For example, it might have been coded */
/* in PL/I or assembler. */

/***/
x = myfunct(1)
exit

If myfunct enters an infinite loop, pressing the attention interrupt key and entering
HI will not stop myfunct. However, pressing the attention interrupt key and then
entering HE will stop the function and the exec (EXEC1) that called it. HE does not
automatically stop any exec that called EXEC1, unless you are running under ISPF.

For more information about the HE condition, see QS TSO/F REXX Referencd.

Note: HE does not alter the halt condition, which is raised by HI. If you entered HI
before you entered HE (for example, you may have first issued HI and it
failed to end your exec), the halt condition will remain set for the exec and all
calling execs. HE will stop your exec, and then the halt condition, raised
when you entered HI, will be recognized by any exec that called your exec.

DO FOREVER Loops

Sometimes you might want to purposely write an infinite loop; for instance, in an
exec that reads records from a data set until it reaches end of file, or in an exec
that interacts with a user until the user enters a particular symbol to end the loop.
You can use the EXIT instruction to end an infinite loop when a condition is met, as
in the following example. More about the EXIT instruction appears in

Chapter 4. Controlling the Flow Within an Exec 49

Using Looping Instructions

— Example Using a DO FOREVER Loop

[FHrk gk rk Rk kR kR Rk Rk Rk Rk Rk krhrxkx REXX *kdhsrhdhdhrhsmrhrhhrhrrhrhmrrsrs/
/* This exec prints data sets named by a user until the user enters*/

/* a null Tine. */
/********************************** *k*k *k*k *k*k *k*k *****/
DO FOREVER

SAY 'Enter the name of the next data set or a blank to end.'
PULL dataset_name
IF dataset_name = '' THEN
EXIT
ELSE
DO
"PRINTDS DA("dataset_name")"
SAY dataset_name 'printed.'
END
END

This example sends data sets to the printer and then issues a message that the
data set was printed. When the user enters a blank, the loop ends and so does the
exec. To end the loop without ending the exec, use the LEAVE instruction, as
described in the following topic.

LEAVE Instruction

The LEAVE instruction causes an immediate exit from a repetitive loop. Control
goes to the instruction following the END keyword of the loop. An example of using
the LEAVE instruction follows:

— Example Using the LEAVE Instruction

J R (o) G e a7

/* This exec uses the LEAVE instruction to exit from a DO FOREVER =/

/* loop that sends data sets to the printer. */
/********************************** *k*k *k*k *k*k *k*k *****/
DO FOREVER

SAY 'Enter the name of the next data set.'
SAY 'When there are no more data sets, enter QUIT.'
PULL dataset_name
IF dataset_name = 'QUIT' THEN
LEAVE
ELSE
DO
"PRINTDS DA("dataset_name")"
SAY dataset_name 'printed.’
END
END
SAY 'Good-bye.'

ITERATE Instruction

Another instruction, ITERATE, stops execution from within the loop and passes
control to the DO instruction at the top of the loop. Depending on the type of DO
instruction, a control variable is increased and tested and/or a condition is tested to
determine whether to repeat the loop. Like LEAVE, ITERATE is used within the
loop.

DO count

IF count
THEN

1 T0 10

T
8

50 2/0S V1R2.0 TSO/E REXX User's Guide

Using Looping Instructions

ITERATE
ELSE
SAY 'Number' count
END

This example results in a list of numbers from 1 to 10 with the exception of number

8.

4 Number h
Number
Number
Number
Number
Number
Number
Number
Number

- /

H O N WN —

Exercises - Using Loops

1. What are the results of the following loops?
a. DO digit =170 3
SAY digit
END
SAY 'Digit is now' digit
b. DO count = 10 BY -2 T0 6
SAY count
END
SAY 'Count is now' count
C. DO index = 10 TO 8
SAY 'Hup! Hup! Hup!'
END
SAY 'Index is now' index

2. Sometimes an infinite loop can occur when input to end the loop doesn’t match
what is expected. For instance, in the previous example using the

Instruction” on page 50, what happens when the user enters Quit and the PULL

instruction is changed to a PARSE PULL instruction?
PARSE PULL dataset_name

ANSWERS
1. The results of the repetitive loops are as follows:
a.
1
2
3
Digit is now 4
b.
10
8
6
Count is now 4
C.

(blank)
Index is now 10

2. The user would be unable to leave the loop because "Quit" is not equal to
"QUIT". In this case, omitting the PARSE keyword is preferred because

Chapter 4. Controlling the Flow Within an Exec 51

Using Looping Instructions

regardless of whether the user enters "quit", "QUIT", or "Quit", the language
processor translates the input to uppercase before comparing it to "QUIT".

Conditional Loops

There are two types of conditional loops, DO WHILE and DO UNTIL. Both types of
loops are controlled by one or more expressions. However, DO WHILE loops test
the expression before the loop executes the first time and repeat only when the
expression is true. DO UNTIL loops test the expression after the loop executes at
least once and repeat only when the expression is false.

DO WHILE Loops

DO WHILE loops in a flowchart appear as follows:

DO WHILE +

“

True

expression instruction(s)

END

As REXX instructions, the flowchart example looks like:

DO WHILE expression /* expression must be true */
instruction(s)
END

Use a DO WHILE loop when you want to execute the loop while a condition is true.
DO WHILE tests the condition at the top of the loop. If the condition is initially false,
the loop is never executed.

You can use a DO WHILE loop instead of the DO FOREVER loop in the example

using the LLEAME_lnstLudm_an_page_Ed However, you need to initialize the loop
with a first case so the condition can be tested before you get into the loop. Notice
the first case initialization in the beginning three lines of the following example.

— Example Using DO WHILE

[HErFERIRIERFERIRKERF AR ARFERAR* AR REXX #hhrhhhhrh ke h ke hkhhk kA hkx*h k% [
/* This exec uses a DO WHILE Toop to send data sets to the system =*/
/* printer. */
/***/
SAY 'Enter the name of a data set to print.'
SAY 'If there are no data sets, enter QUIT.'
PULL dataset_name
DO WHILE dataset_name \= 'QUIT'
"PRINTDS DA("dataset_name")"
SAY dataset_name 'printed.'
SAY 'Enter the name of the next data set.'
SAY 'When there are no more data sets, enter QUIT.'
PULL dataset_name
END
SAY 'Good-bye.'

52 2/0S V1R2.0 TSO/E REXX User's Guide

Using Looping Instructions

Exercise - Using a DO WHILE Loop
Write an exec with a DO WHILE loop that asks passengers on a commuter airline if

they want a window seat and keeps track of their responses. The flight has 8
passengers and 4 window seats. Discontinue the loop when all the window seats
are taken. After the loop ends, display the number of window seats taken and the
number of passengers questioned.

ANSWER

— Possible Solution
[rk g kk kR Rk kR Rk kR RR kAR Rk AR kkhrkdd REXX *dkrddkdkrhhrrhhrrrhhrrrhrrrsrs/

/* This exec uses a DO WHILE Toop to keep track of window seats in */

/* an 8-seat commuter airline. */
/***/

window_seats = 0 /* Initialize window seats to 0 */
passenger = 0 /* Initialize passengers to 0 */

DO WHILE (passenger < 8) & (window_seats \= 4)

/**/
/* Continue while you have not questioned all 8 passengers and =*/

/* while all the window seats are not taken. */
[Fk ok dkk ok dkk ok dok ok ko k ok ko k ok ok kk ok k ok ko k ok ok k ok k ok ko k ok ok ke k ok ok kR Kkkkkxhkk [

SAY 'Do you want a window seat? Please answer Y or N.'
PULL answer
passenger = passenger + 1
/* Increase the number of passengers by 1 %/
IF answer = 'Y' THEN
window_seats = window_seats + 1

/* Increase the number of window seats by 1 */

ELSE NOP
END

SAY window_seats 'window seats were assigned.'
SAY passenger 'passengers were questioned.'

DO UNTIL Loops
DO UNTIL loops in a flowchart appear as follows:

pounTL Y
instruction(s)
False)
expression

True
END

As REXX instructions, the flowchart example looks like:

Chapter 4. Controlling the Flow Within an Exec 53

Using Looping Instructions

DO UNTIL expression /* expression must be false */
instruction(s)
END

Use DO UNTIL loops when a condition is not true and you want to execute the loop
until the condition is true. The DO UNTIL loop tests the condition at the end of the
loop and repeats only when the condition is false. Otherwise the loop executes
once and ends. For example:

— Example Using DO UNTIL

[rk Kk kkkkkkkkkkkkkkkkkkkkkkkkrkhd REXX *dkrhdkdkrhhdkrhhrrhhhrhhhrrrsrr/
/* This exec uses a DO UNTIL loop to ask for a password. If the */
/* password is incorrect three times, the Toop ends. */
/***/
password = 'abracadabra'
time = 0
DO UNTIL (answer = password) | (time = 3)
SAY 'What is the password?'
PULL answer
time = time + 1
END

Exercise - Using a DO UNTIL Loop
Change the exec in the previous exercise, LExercise - Using a DO WHILE | oop” on

, from a DO WHILE to a DO UNTIL loop and achieve the same results.
Remember that DO WHILE loops check for true expressions and DO UNTIL loops
check for false expressions, which means their logical operators are often reversed.

ANSWER

— Possible Solution

[*k Kk kkkkkkkkkkk kR kkkkkkkkkkkkkhd REXX *dkrhskhkrhhdkrrhorhhrrrhhrrrrts/
/* This exec uses a DO UNTIL loop to keep track of window seats in x/

/* an 8-seat commuter airline. */
/***/

window_seats = 0 /* Initialize window seats to 0 */
passenger = 0 /* Initialize passengers to 0 */

DO UNTIL (passenger >= 8) | (window_seats = 4)

/**/
/* Continue until you have questioned all 8 passengers or until */

/* all the window seats are taken. */
/**/

SAY 'Do you want a window seat? Please answer Y or N.'
PULL answer
passenger = passenger + 1
/* Increase the number of passengers by 1 =/
IF answer = 'Y' THEN
window_seats = window_seats + 1
/* Increase the number of window seats by 1 */
ELSE NOP
END
SAY window_seats 'window seats were assigned.'
SAY passenger 'passengers were questioned.'

54 2/0S V1R2.0 TSO/E REXX User's Guide

Using Looping Instructions

Combining Types of Loops

You can combine repetitive and conditional loops to create a compound loop. The
following loop is set to repeat 10 times while a certain condition is met, at which
point it stops.
quantity = 20
DO number = 1 TO 10 WHILE quantity < 50

quantity = quantity + number

SAY 'Quantity = 'quantity ' (Loop 'number')'’
END

The result of this example is as follows:

4 Quantity = 21 (Loop 1))
Quantity = 23 (Loop 2)
Quantity = 26 (Loop 3)
Quantity = 30 (Loop 4)
Quantity = 35 (Loop 5)
Quantity = 41 (Loop 6)
Quantity = 48 (Loop 7)
Quantity = 56 (Loop 8)
- J

You can substitute a DO UNTIL loop, change the comparison operator from < to >,
and get the same results.
quantity = 20
DO number = 1 TO 10 UNTIL quantity > 50
quantity = quantity + number
SAY 'Quantity = 'quantity ' (Loop 'number')’
END

Nested DO Loops
Like nested IF/THEN/ELSE instructions, DO loops can also be within other DO
loops. A simple example follows:

DO outer =1 TO 2
DO inner = 1 T0 2

SAY 'HIP'
END
SAY "HURRAH'

END

The output from this example is:

HIP
HIP
HURRAH
HIP
HIP
HURRAH

If you need to leave a loop when a certain condition arises, use the LEAVE
instruction followed by the control variable of the loop. If the LEAVE instruction is for
the inner loop, you leave the inner loop and go to the outer loop. If the LEAVE
instruction is for the outer loop, you leave both loops.

To leave the inner loop in the preceding example, add an IF/THEN/ELSE instruction
that includes a LEAVE instruction after the IF instruction.
DO outer = 1 TO 2
DO inner = 1 T0 2
IF inner > 1 THEN
LEAVE inner

Chapter 4. Controlling the Flow Within an Exec 55

Using Looping Instructions

ELSE
SAY 'HIP'
END
SAY '"HURRAH'
END

The result is as follows:

HIP
HURRAH
HIP
HURRAH

Exercises - Combining Loops
1. What happens when the following exec runs?

DO outer = 1 70 3
SAY /* Write a blank line */
DO inner = 1 T0 3
SAY 'Quter' outer 'Inner' inner
END
END

2. Now what happens when the LEAVE instruction is added?

DO outer = 1 T0 3
SAY /* Write a blank line */
DO inner = 1 T0 3
IF inner = 2 THEN
LEAVE 1inner
ELSE
SAY 'Outer' outer 'Inner' inner
END
END

ANSWERS
1. When this example runs, you see on your screen the following:

-

—
—_

Inner
Inner 2
Inner

Outer
Quter
Quter

—

—
w

—

Quter 2 Inner
Quter 2 Inner 2
Quter 2 Inner

w

—_

Quter 3 Inner
Quter 3 Inner 2
Quter 3 Inner

w

-

2. The result is one line of output for each of the inner loops.

Quter 1 Inner 1

Quter 2 Inner 1

Quter 3 Inner 1

Using Interrupt Instructions

Instructions that interrupt the flow of an exec can cause the exec to:
* Terminate (EXIT)
» Skip to another part of the exec marked by a label (SIGNAL)

56 2/0S V1R2.0 TSO/E REXX User's Guide

Using Interrupt Instructions

» Go temporarily to a subroutine either within the exec or outside the exec
(CALL/RETURN).

EXIT Instruction

The EXIT instruction causes an exec to unconditionally end and return to where the
exec was invoked. If the exec was initiated from the PROC section of an ISPF
selection panel, EXIT returns to the ISPF panel. If the exec was called by a
program, such as another exec, EXIT returns to the program. More about calling

external routines appears later in this chapter and in LC.ha.p.teLE..JN.uhnd

In addition to ending an exec, EXIT can also return a value to the invoker of the
exec. If the exec was invoked as a subroutine from another REXX exec, the value
is received in the REXX special variable RESULT. If the exec was invoked as a
function, the value is received in the original expression at the point where the
function was invoked. Otherwise, the value is received in the REXX special variable
RC. The value can represent a return code and can be in the form of a constant or
an expression that is computed.

— Example Using the EXIT Instruction

[FHrk gk Rk R R IR IR I ER IR I IR F AR A x*E* REXX *hdrhdhdhrhsrhhhrhrrhrhsrrsrs/
/* This exec uses the EXIT instruction to end the exec and return =*/
/* a value that indicates whether or not a job applicant gets the =*/

/* job. A value of 0 means the applicant does not qualify for */
/* the job, but a value of 1 means the applicant gets the job. */
/* The value is placed in the REXX special variable RESULT. */

/***/
SAY 'How many months of experience do you have? Please enter'

SAY 'the months as a number.'

PULL month

SAY 'Can you supply 3 references? Please answer Y or N.'
PULL reference

SAY 'Are you available to start work tomorrow? Please answer Y or N.'
PULL tomorrow

IF (month > 24) & (reference = 'Y') & (tomorrow = 'Y') THEN

job =1 /* person gets the job */
ELSE

job =0 /* person does not get the job */
EXIT job

CALL/RETURN Instructions

The CALL instruction interrupts the flow of an exec by passing control to an internal
or external subroutine. An internal subroutine is part of the calling exec. An external
subroutine is another exec. The RETURN instruction returns control from a
subroutine back to the calling exec and optionally returns a value.

When calling an internal subroutine, CALL passes control to a label specified after

the CALL keyword. When the subroutine ends with the RETURN instruction, the
instructions following CALL are executed.

Chapter 4. Controlling the Flow Within an Exec 57

Using Interrupt Instructions

instruction(s)
CALL subl——
—

instruction(s)
EXIT

—

subl:
instruction(s)
RETURN

I

When calling an external subroutine, CALL passes control to the exec name that is
specified after the CALL keyword. When the external subroutine completes, you can
use the RETURN instruction to return to where you left off in the calling exec.

REXX.EXEC(MAIN)

instruction(s)
CALL sub?

v
>

instruction(s)

v

REXX.EXEC(SUB2)

instruction(s)

RETURN
\
L

For more information about calling subroutines, see [Chapter 6 Writing Subroutined

SIGNAL Instruction

The SIGNAL instruction, like CALL, interrupts the normal flow of an exec and
causes control to pass to a specified label. The label to which control passes can
appear before or after the SIGNAL instruction. Unlike CALL, SIGNAL does not
return to a specific instruction to resume execution. When you use SIGNAL from
within a loop, the loop automatically ends; and when you use SIGNAL from an
internal routine, the internal routine will not return to its caller.

In the following example, if the expression is true, then the language processor
goes to the label Emergency: and skips all instructions in between.

58 2/0S V1R2.0 TSO/E REXX User's Guide

Using Interrupt Instructions

IF expression THEN
SIGNAL Emergency
ELSE
instruction(s)

v

Emergency:
instruction(s)

SIGNAL is useful for testing execs or to provide an emergency course of action. It
should not be used as a convenient way to move from one place in an exec to
another. SIGNAL does not provide a way to return as does the CALL instruction

described in ECALL/RETIRN Instructions” on page 57.

For more information about the SIGNAL instruction, see page k14, and xos TsoA
BEXX Referenca.

Chapter 4. Controlling the Flow Within an Exec 59

60 2/0S Vi1R2.0 TSO/E REXX User's Guide

Chapter 5. Using Functions

What is a Function? .61
Example of a Function .62
Built-In Functions .63
Arithmetic Functons .63
Comparison Functions .68
Conversion Functions .64
Formatting Functions. . . e o 7
String Manipulating Functlons e o
Miscellaneous Functions . . . N 15
Testing Input with Built-In Functlons Coe06
Exercise - Writing an Exec with Built-In Funct|ons06

This chapter defines what a function is and describes how to use the built-in
functions.

What is a Function?

Afunction is a sequence of instructions that can receive data, process that data, and
return a value. In REXX, there are several kinds of functions:

Built-in functions — These functions are built into the language processor. More
about built-in functions appears later in this chapter.

User-written functions — These functions are written by an individual user or
supplied by an installation and can be internal or external. An internal function is
part of the current exec that starts at a label. An external function is a
self-contained program or exec outside of the calling exec. More information

about user-written functions appears in \riting a Function” on page 77.

Function packages — These are groups of functions and subroutines written by
an individual user or supplied by an installation. They are link-edited into load
modules and categorized as user, local, and system. TSO/E external functions
are provided in a system function package. More information about TSO/E

external functions appears in LISQ/E External Functions” on page 119,

Regardless of the kind of function, all functions return a value to the exec that
issued the function call. To call a function, type the function name directly followed
by one or more arguments within parentheses. There can be no space between
the function name and the left parenthesis.

function(arguments)

A function call can contain up to 20 arguments separated by commas. Each
argument can be one or more of the following.

© Copyright IBM Corp. 1988,

Blank

function()

Constant

function(55)

Symbol

function(symbol_name)

Literal string

function('With a literal string')
Option recognized by the function

2001 61

What is a Function?

function(option)

* Another function
function(function(arguments))

» Combination of argument types
function('With a literal string', 55, option)

When the function returns a value, and all functions must return values, the value
replaces the function call. In the following example, the value returned is added to 7
and the sum is displayed.

SAY 7 + function(arguments)

A function call generally appears in an expression. Therefore a function call, like an
expression, does not usually appear in an instruction by itself.

Example of a Function

Calculations represented by functions often require many instructions. For instance,
the simple calculation for finding the highest number in a group of three numbers,
might be written as follows:

— Finding a Maximum Number

[Fk K kkk ko kkkkkkkkkkkkkkhhkkhhx REXX Hkkhdhkrhkhsx * %%k * %%k * /
/* This exec receives three numbers from a user and analyzes which */
/* number is the greatest. */

/***/

PARSE ARG numberl, number2, number3 .

IF numberl > number2 THEN
IF numberl > number3 THEN
greatest = numberl
ELSE
greatest = number3
ELSE
IF number2 > number3 THEN
greatest = number2
ELSE
greatest = number3

RETURN greatest

Rather than writing multiple instructions every time you want to find the maximum of
a group of three numbers, you can use a built-in function that does the calculation
for you and returns the maximum number. The function is called MAX and is used
as follows:

MAX (numberl,number2,number3,...)

To find the maximum of 45, -2, number, 199, and put the maximum into the symbol
biggest, write the following instruction:

biggest = MAX(45,-2,number,199)

62 2/0S Vi1R2.0 TSO/E REXX User's Guide

Built-In Functions

Built-In Functions

Over 50 functions are built into the language processor. The built-in functions fall
into the following categories:

» Arithmetic functions

These functions evaluate numbers from the argument and return a particular
value.

» Comparison functions
These functions compare numbers and/or strings and return a value.
» Conversion functions

These functions convert one type of data representation to another type of data
representation.

» Formatting functions

These functions manipulate the characters and spacing in strings supplied in the
argument.

» String manipulating functions

These functions analyze a string supplied in the argument (or a variable
representing a string) and return a particular value.

* Miscellaneous functions
These functions do not clearly fit into any of the other categories.

The following tables briefly describe the functions in each category. For a complete
description of these functions, see

Arithmetic Functions

Function Description

ABS Returns the absolute value of the input number.

DIGITS Returns the current setting of NUMERIC DIGITS.

FORM Returns the current setting of NUMERIC FORM.

FUzz Returns the current setting of NUMERIC FUZZ.

MAX Returns the largest number from the list specified, formatted according
to the current NUMERIC settings.

MIN Returns the smallest number from the list specified, formatted according
to the current NUMERIC settings.

RANDOM Returns a quasi-random, non-negative whole number in the range
specified.

SIGN Returns a number that indicates the sign of the input number.

TRUNC Returns the integer part of the input number, and optionally a specified

number of decimal places.

Comparison Functions

Function Description

COMPARE Returns 0 if the two input strings are identical. Otherwise, returns the
position of the first character that does not match.

DATATYPE Returns a string indicating the input string is a particular data type, such
as a number or character.

Chapter 5. Using Functions 63

Built-In Functions

Function

Description

SYMBOL

Returns this state of the symbol (variable, literal, or bad).

Conversion Functions

Function

Description

B2X

Returns a string, in character format, that represents the input binary
string converted to hexadecimal. (Binary to hexadecimal)

C2D

Returns the decimal value of the binary representation of the input
string. (Character to Decimal)

c2Xx

Returns a string, in character format, that represents the input string
converted to hexadecimal. (Character to Hexadecimal)

D2C

Returns a string, in character format, that represents the input decimal
number converted to binary. (Decimal to Character)

D2X

Returns a string, in character format, that represents the input decimal
number converted to hexadecimal. (Decimal to Hexadecimal)

X2B

Returns a string, in character format, that represents the input
hexadecimal string converted to binary. (Hexadecimal to binary)

X2C

Returns a string, in character format, that represents the input
hexadecimal string converted to character. (Hexadecimal to Character)

X2Db

Returns the decimal representation of the input hexadecimal string.
(Hexadecimal to Decimal)

Formatting Functions

Function

Description

CENTER/
CENTRE

Returns a string of a specified length with the input string centered in it,
with pad characters added as necessary to make up the length.

COPIES

Returns the specified number of concatenated copies of the input string.

FORMAT

Returns the input number, rounded and formatted.

JUSTIFY *

Returns a specified string formatted by adding pad characters between
words to justify to both margins.

LEFT

Returns a string of the specified length, truncated or padded on the right
as needed.

RIGHT

Returns a string of the specified length, truncated or padded on the left
as needed.

SPACE

Returns the words in the input string with a specified number of pad
characters between each word.

* Indicates a non-SAA built-in function provided only by TSO/E.

String Manipulating Functions

Function

Description

ABBREV

Returns a string indicating if one string is equal to the specified number
of leading characters of another string.

DELSTR

Returns a string after deleting a specified number of characters, starting
at a specified point in the input string.

64 2/0S Vi1R2.0 TSO/E REXX User's Guide

Built-In Functions

Function Description

DELWORD Returns a string after deleting a specified number of words, starting at a
specified word in the input string.

FIND * Returns the word number of the first word of a specified phrase found
within the input string.

INDEX * Returns the character position of the first character of a specified string
found in the input string.

INSERT Returns a character string after inserting one input string into another
string after a specified character position.

LASTPOS Returns the starting character position of the last occurrence of one
string in another.

LENGTH Returns the length of the input string.

OVERLAY Returns a string that is the target string overlaid by a second input
string.

POS Returns the character position of one string in another.

REVERSE Returns a character string, the characters of which are in reverse order
(swapped end for end).

STRIP Returns a character string after removing leading or trailing characters
or both from the input string.

SUBSTR Returns a portion of the input string beginning at a specified character
position.

SUBWORD Returns a portion of the input string starting at a specified word number.

TRANSLATE Returns a character string with each character of the input string
translated to another character or unchanged.

VERIFY Returns a number indicating whether an input string is composed only of
characters from another input string or returns the character position of
the first unmatched character.

WORD Returns a word from an input string as indicated by a specified number.

WORDINDEX Returns the character position in an input string of the first character in
the specified word.

WORDLENGTH | Returns the length of a specified word in the input string.

WORDPOS Returns the word number of the first word of a specified phrase in the
input string.

WORDS Returns the number of words in the input string.

* Indicates a non-SAA built-in function provided only by TSO/E.

Miscellaneous Functions

Function Description

ADDRESS Returns the name of the environment to which commands are currently
being sent.

ARG Returns an argument string or information about the argument strings to
a program or internal routine.

BITAND Returns a string composed of the two input strings logically ANDed
together, bit by bit.

BITOR Returns a string composed of the two input strings logically ORed

together, bit by bit.

Chapter 5. Using Functions 65

Built-In Functions

Function Description

BITXOR Returns a string composed of the two input strings eXclusive ORed
together, bit by bit.

CONDITION Returns the condition information, such as name and status, associated
with the current trapped condition.

DATE Returns the date in the default format (dd mon yyyy) or in one of various
optional formats.

ERRORTEXT Returns the error message associated with the specified error number.

EXTERNALS * Returns the number of elements in the terminal input buffer. In TSO/E,
this function always returns a 0.

LINESIZE * Returns the current terminal line width minus 1.

QUEUED Returns the number of lines remaining in the external data queue at the
time when the function is invoked.

SOURCELINE Returns either the line number of the last line in the source file or the
source line specified by a number.

TIME Returns the local time in the default 24-hour clock format (hh:mm:ss) or
in one of various optional formats.

TRACE Returns the trace actions currently in effect.

USERID * Returns the TSO/E user ID, if the REXX exec is running in the TSO/E
address space.

VALUE Returns the value of a specified symbol and optionally assigns it a new
value.

XRANGE Returns a string of all 1-byte codes (in ascending order) between and

including specified starting and ending values.

* Indicates a non-SAA built-in function provided only by TSO/E.

Testing Input with Built-In Functions

Some of the built-in functions provide a convenient way to test input. When an
interactive exec requests input, the user might respond with input that is not valid.

For instance, in the example EUsing Comparison Fxpressions” on page 31|, the exec

requests a dollar amount with the following instructions.

SAY 'What did you spend for lunch yesterday?'
SAY 'Please do not include the dollar sign.'
PARSE PULL Tlast

If the user responds with a number only, the exec will process that information
correctly. If the user responds with a number preceded by a dollar sign or with a
word, such as nothing, the exec will return an error. To avoid getting an error, you
can check the input with the DATATYPE function as follows:
DO WHILE DATATYPE(last) \= 'NUM'

SAY 'Please enter the lunch amount again.'

SAY 'The amount you entered was not a number without a dollar sign.'

PARSE PULL Tast
END

Other useful built-in functions to test input are WORDS, VERIFY, LENGTH, and
SIGN.

Exercise - Writing an Exec with Built-In Functions

Write an exec that checks a data set member name for a length of 8 characters. If
a member name is longer than 8 characters, the exec truncates it to 8 and sends

66 2/0S Vi1R2.0 TSO/E REXX User's Guide

Built-In Functions

the user a message indicating the shortened name. Use the LENGTH and the
SUBSTR built-in functions as described in z20S TSO/F BEXX Referenca.

ANSWER

— Possible Solution

[FkF gk ke kok ok kok ok kk ok k ok ok k ok ok ok REXX *%kkkkkkrhhhkhkhkhkkkkrrrk *kkkkkhkk [
/* This exec tests the length of a name for a data set member. If =*/
/* the name is Tonger than 8 characters, the exec truncates the */
/* extra characters and sends the user a message indicating the */
/* shortened member name. */
/*********************** """"""""""""""" ****************/
SAY 'Please enter a member name.'

PULL membername

IF LENGTH(membername) > 8 THEN /* Name is longer than 8 characters*/
DO
membername = SUBSTR(membername,1,8) /* Shorten the name to */
/* the first 8 characters=*/
SAY 'The member name you entered was too long.'
SAY membername 'will be used.'
END
ELSE NOP

Chapter 5. Using Functions 67

Built-In Functions

68 2/0S V1R2.0 TSO/E REXX User's Guide

Chapter 6. Writing Subroutines and Functions

What are Subroutines and Functions?69
When to Write Subroutines vs. Functions70
Writing a Subroutine 40
Passing Information to a Subroutme e 47
Passing Information by Using Variables.72
Passing Information by Using Arguments74
Receiving Information from a Subroutine . . . Y £
Example - Writing an Internal and an External Subroutme76
Writing a Function. . . . Y 4
Passing Information to a Functlon e 4
Passing Information by Using Variables.79
Passing Information by Using Arguments81
Receiving Information from a Functon83
Exercise - Writing a Function.83
Summary of Subroutines and Functions.88

This chapter shows how to write subroutines and functions and compares their
differences and similarities.

What are Subroutines and Functions?

Subroutines and functions are routines made up of a sequence of instructions that
can receive data, process that data, and return a value. The routines can be:

Internal The routine is within the current exec, marked by a label and used
only by that exec.

External A program or exec in a member of a partitioned data set that can
be called by one or more execs. In order for an exec to call the
routine, the exec and the routine must be allocated to a system file,
for example SYSEXEC or SYSPROC, or be in the same PDS. For
more mformatlon about allocating to a system file, see

In many aspects, subroutines and functions are the same; yet they are different in a
few major aspects, such as the way they are called and the way they return values.

» Calling a subroutine

To call a subroutine, use the CALL instruction followed by the subroutine name
(label or exec member name) and optionally followed by up to 20 arguments
separated by commas. The subroutine call is an entire instruction.

CALL subroutine_name argumentl, argument2,...

Issuing a CALL to internal label names for REXX subroutines and functions that
are greater than eight characters, may have unintended results. Label names will
be truncated to eight characters.

» Calling a function

To call a function, use the function name (label or exec member name)
immediately followed by parentheses that can contain arguments. There can be
no space between the function name and the parentheses. The function call is
part of an instruction, for example, an assignment instruction.

= function(argumentl, argument2,...)
* Returning a value from a subroutine

© Copyright IBM Corp. 1988, 2001 69

What are Subroutines and Functions?
A subroutine does not have to return a value, but when it does, it sends back the

value with the RETURN instruction.
RETURN value

The calling exec receives the value in the REXX special variable named
RESULT.

SAY 'The answer is' RESULT
* Returning a value from a function

A function must return a value. When the function is a REXX exec, the value is
returned with either the RETURN or EXIT instruction.

RETURN value

The calling exec receives the value at the function call. The value replaces the
function call, so that in the following example, x = value.

x = function(argumentl, argument2,...)

When to Write Subroutines vs. Functions

The actual instructions that make up a subroutine or a function can be identical. It is
the way you want to use them in an exec that turns them into either a subroutine or
a function. For example, the built-in function SUBSTR can be called as either a
function or a subroutine. As a function, you invoke it as follows to shorten a word to
its first eight characters:

x = SUBSTR('verylongword',1,8) /* x is set to 'verylong' */

As a subroutine, you would get the same results with the following instructions:

CALL SUBSTR 'verylongword', 1, 8 /* x is set to 'verylong' =/
x = RESULT

When deciding whether to write a subroutine or a function, ask yourself the
following questions:

* |s a returned value optional? If so, write a subroutine.

* Do | need a value returned as an expression within an instruction? If so, write a
function.

The rest of this chapter describes how to write subroutines, how to write functions,
and finally summarizes the differences and similarities between the two.

Writing a Subroutine

A subroutine is a series of instructions that an exec invokes to perform a specific
task. The instruction that invokes the subroutine is the CALL instruction. The CALL
instruction may be used several times in an exec to invoke the same subroutine.

When the subroutine ends, it can return control to the instruction that directly

follows the subroutine call. The instruction that returns control is the RETURN
instruction.

70 2/0S Vi1R2.0 TSO/E REXX User's Guide

instruction(s)
CALL subl——

—>
instruction(s)
EXIT

—

subl:
instruction(s)
RETURN

I

Writing a Subroutine;

Subroutines may be internal and designated by a label, or external and designated
by the data set member name that contains the subroutine. The preceding example
illustrates an internal subroutine named "sub1".

IMPORTANT NOTE
Because internal subroutines generally appear after the main part of the exec,

when you have an internal subroutine, it is important to end the main part of

the exec with the EXIT instruction.

The following illustrates an external subroutine named "sub2".
To determine whether to make a subroutine internal or external, you might consider

REXX.EXEC(MAIN)

CALL sub2

instruction(s)

»
>

instruction(s)

v

REXX.EXEC(SUB2)

RETURN
|

instruction(s)

I

factors, such as:

» Size of the subroutine. Very large subroutines often are external, whereas small
subroutines fit easily within the calling exec.

* How you want to pass information. It is quicker to pass information through

variables in an internal subroutine. This method is described in

* Whether the subroutine might be of value to more than one exec or user. If so,
an external subroutine is preferable.

Chapter 6. Writing Subroutines and Functions

71

Writing a Subroutine;

Passing Information to a Subroutine

An internal subroutine can share variables with its caller. Therefore you can use
commonly shared variables to pass information between caller and internal
subroutine. You can also use arguments to pass information to and from an internal
subroutine. External subroutines, however, cannot share the same variables, and
information must pass between them through arguments or some other external
way, such as the data stack.

Passing Information by Using Variables

When an exec and its internal subroutine share the same variables, the value of a
variable is what was last assigned, regardless of whether the assignment was in the
main part of the exec or in the subroutine. In the following example, the value of
answer is assigned in the subroutine and displayed in the main part of the exec.
The variables numberl, number2, and answer are shared.

— Example of Passing Information in a Variable

/******~k~k*********************** REXX sk kkakskrkhkhrhhhrhhhrhhkrhrsr/
/* This exec receives a calculated value from an internal */

/* subroutine and displays that value. */
/***/

numberl 5

number2 10

CALL subroutine

SAY answer /* Displays 15 */
EXIT

subroutine:
answer = numberl + number2
RETURN

Using the same variables in an exec and its internal subroutine can sometimes
create problems. In the following example, the main part of the exec and the
subroutine use the same control variable, "i", for their DO loops. As a result, the DO
loop repeats only once in the main exec because the subroutine returns to the main
exec with i = 6.

72 2/0S V1R2.0 TSO/E REXX User's Guide

Writing a Subroutine;

— Example of a Problem Caused by Passing Information in a Variable

[FHrk gk kk Rk h Rk R Rk Rk R R* Rk k Ak Fx*x REXX *rhdkhdkhdhrhsrhkhhrhrrhrhrrrsrs/
/* NOTE: This exec contains an error. */
/* It uses a DO Toop to call an internal subroutine and the */
/* subroutine also uses a DO Toop with same control variable as */

/* the main exec. The DO Toop in the main exec repeats only once. */
/***/

numberl = 5
number2 = 10
DO i =1T05
CALL subroutine
SAY answer /* Displays 105 */
END
EXIT

subroutine:

DO i =1T05
answer = numberl + number2
numberl = number2
number2 = answer

END

RETURN

To avoid this kind of problem in an internal subroutine, you can use:
» The PROCEDURE instruction as described in the next topic.

» Different variable names in a subroutine and pass arguments on the CALL
instruction as described in L i i i “

Protecting Variables with the PROCEDURE Instruction: When you use the
PROCEDURE instruction immediately after the subroutine label, all variables used
in the subroutine become local to the subroutine and are shielded from the main
part of the exec. You can also use the PROCEDURE EXPOSE instruction to protect
all but a few specified variables.

The following two examples show the differing results when a subroutine uses the
PROCEDURE instruction and when it doesn’t.

— Example Using the PROCEDURE Instruction

/******************************* REXX ******************************/
/* This exec uses a PROCEDURE instruction to protect the variables */
/* within its subroutine. */
[k F gk dkk ok dk ok kR ok kR ok ok k ok ok k ko k ko k ok ok kk ko k ko k A Fkkxxhhk Kk Kk kxR *%/
numberl = 10
CALL subroutine
SAY numberl number2 /* displays 10 NUMBER2 =*/
EXIT

subroutine: PROCEDURE
numberl = 7

number2 = 5

RETURN

Chapter 6. Writing Subroutines and Functions 73

Writing a Subroutine;

— Example Without the PROCEDURE Instruction
/******************************* REXX sk kkkkkkkdhkkrhhkrhhhrhhkrhrsrk/

/* This exec does not use a PROCEDURE instruction to protect the =*/
/* variables within its subroutine. */
/*** *k*k *k*k *k*k * /
numberl = 10

CALL subroutine

SAY numberl number2 [+ displays 7 5 =/
EXIT

subroutine:
numberl = 7
number2 = 5
RETURN

Exposing Variables with PROCEDURE EXPOSE: To protect all but specific
variables, use the EXPOSE option with the PROCEDURE instruction, followed by
the variables that are to remain exposed to the subroutine.

— Example Using PROCEDURE EXPOSE

R R Rl o] o

/* This exec uses a PROCEDURE instruction with the EXPOSE option tox/

/* expose one variable, numberl, in its subroutine. The other */
/* variable, number2, is set to null and displays its name in */
/* uppercase. */
/********************************** *k*k *k*k *k*k * * /

numberl = 10
CALL subroutine

SAY numberl number2 /* displays 7 NUMBER2 =/
EXIT

subroutine: PROCEDURE EXPOSE numberl

numberl = 7

number2 = 5

RETURN

For more information about the PROCEDURE instruction, see [zZ0S TSO/F REXX
Beferencd

Passing Information by Using Arguments

A way to pass information to either internal or external subroutines is through
arguments. You can pass up to 20 arguments separated by commas on the CALL
instruction as follows:

CALL subroutine_name argumentl, argument2, argument3,......

Using the ARG Instruction: The subroutine can receive the arguments with the
ARG instruction. Arguments are also separated by commas in the ARG instruction.

ARG argl, arg2, arg3,

The names of the arguments on the CALL and the ARG instructions do not have to
be the same because information is not passed by argument name but by position.
The first argument sent becomes the first argument received and so forth. You can
also set up a template in the CALL instruction, which is then used in the
corresponding ARG instruction. For information about parsing with templates, see

74 2/0S Vi1R2.0 TSO/E REXX User's Guide

Writing a Subroutine;

The following exec sends information to an internal subroutine that computes the
perimeter of a rectangle. The subroutine returns a value in the variable perim that is
specified after the RETURN instruction. The main exec receives the value in the
special variable "RESULT".

—— Example of Passing Arguments on the CALL Instruction

/ REXX e

/* This exec receives as arguments the length and width of a */
/* rectangle and passes that information to an internal subroutine. */
/* The subroutine then calculates the perimeter of the rectangle. */

/hohhhhohothhohohhhohohohliohoilluioioiehluioioheluiniohohluiniohohteliohohti oot

PARSE ARG long wide

CALL perimeter long, wide

SAY 'The perimeter is' RESULT ‘inches."
EXIT

perimeter:

ARG length, width

perim = 2 * length + 2 * width
RETURN‘perim

Notice the positional relationships between 1ong and length, and wide and width.
Also notice how information is received from variable perim in the special variable
RESULT.

Using the ARG Built-in Function: Another way for a subroutine to receive
arguments is with the ARG built-in function. This function returns the value of a
particular argument specified by a number that represents the argument position.

For instance, in the previous example, instead of the ARG instruction,
ARG length, width

you can use the ARG function as follows:

Tength = ARG(1) /* puts the first argument into length x/
width = ARG(2) /* puts the second argument into width */

More information about the ARG function appears in 2Z0S TSO/E REXX Referenca.

Receiving Information from a Subroutine

Although a subroutine can receive up to 20 arguments, it can specify only one
expression on the RETURN instruction. That expression can be:

* A number
RETURN 55

* One or more variables whose values are substituted or when no values were
assigned, return their names

RETURN valuel value2 value3

* A literal string
RETURN 'Work complete.'

» An arithmetic, comparison, or logical expression whose value is substituted.
RETURN 5 * number

Chapter 6. Writing Subroutines and Functions 75

Writing a Subroutine;

Example - Writing an Internal and an External Subroutine

Write an exec that plays a simulated coin toss game of heads or tails between the
computer and a user and displays the accumulated scores. Start off with the
message, "This is a game of chance. Type 'heads', 'tails', or 'quit' and press the
Enter key."

This means that there are four possible inputs:
« HEADS

* TAILS

« QUIT

* None of these three (not valid response).

Write an internal subroutine without arguments to check for valid input. Send valid
input to an external subroutine that compares the valid input with a random
outcome. Use the RANDOM built-in function as, RANDOM(0,1), and equate HEADS
= 0, TAILS = 1. Return the result to the main program where results are tallied and
displayed.

Good luck!

ANSWER

— Possible Solution (Main Exec)
[*kkdkk ok kkkkkkkkkkkkkkkkkxkkk REXX *********************************/

/* This exec plays a simulated coin toss game between the computer */
/* and a user. The user enters heads, tails, or quit. The user */

/* is first checked for validity in an internal subroutine. */
/* An external subroutine uses the RANDOM build-in function to */
/* obtain a simulation of a throw of dice and compares the user */
/* input to the random outcome. The main exec receives */
/* notification of who won the round. Scores are maintained */
/* and displayed after each round. */

/**‘k**k****‘k**k****‘k******k‘k**k****k‘k******k*k****k**k*k**********************/
SAY 'This is a game of chance. Type "heads", "tails", or "quit"

SAY ' and press ENTER.'

PULL response

computer = 0; user = 0 /* initialize scores to zero */
CALL check /% call internal subroutine, check =*/
DO FOREVER
CALL throw response /* call external subroutine, throw =/
IF RESULT = 'machine' THEN /% the computer won */
computer = computer + 1 /% increase the computer score */
ELSE /* the user won */
user = user + 1 /* increase the user score */
SAY 'Computer score = ' computer ' Your score = ' user

SAY 'Heads, tails, or quit?'

PULL response

CALL check /* call internal subroutine, check =/
END
EXIT

76 2/0S Vi1R2.0 TSO/E REXX User's Guide

Writing a Subroutine;

— Possible Solution (Internal Subroutine named CHECK)

check:
[oK kkk ke kk ko kk ok kk ok k ok k ok ko k ko k ko kk ok ko kk ok k ok Fkkkkkkkkkkkkkkk [
/* This internal subroutine checks for valid input of "HEADS", */

/* "TAILS", or "QUIT". If the user entered anything else, the */
/* subroutine tells the user that it is an invalid response and */

/* asks the user to try again. The subroutine keeps repeating */
/* until the user enters valid input. Information is returned to =*/
/* the main exec through commonly used variables. */
[k Fkk ok kk ok dk ok k ok ok k ok ok k ok ok k ok ko k ko k ok ok kok K Kkkkkkkkkkkhkkkkhkkhhkk [
DO UNTIL outcome = 'correct'

SELECT

WHEN response = 'HEADS' THEN
outcome = 'correct'
WHEN response = 'TAILS' THEN
outcome = 'correct'
WHEN response = 'QUIT' THEN
EXIT
OTHERWISE
outcome = 'incorrect'
SAY "That's not a valid response. Try again!"
SAY "Heads, tails, or quit?"
PULL response
END
END
RETURN

— Possible Solution (External Subroutine named THROW)

[rkFEkk kR Rk k kR kkk Rk kkkkkkkkhhrk REXX #xddkkrhhhrhhrrhhrrhhhrrrhrrrsrs/
/* This external subroutine receives the valid input from the user,*/
/* analyzes it, gets a random "throw" from the computer and */
/* compares the two values. If they are the same, the user wins. */
/* 1f they are different, the computer wins. The outcome is then =*/

/* returned to the calling exec. */
R T R R R R S T T *%/
ARG input
IF input = '"HEADS' THEN
userthrow = 0 /* heads = 0 =/
ELSE
userthrow = 1 /* tails = 1 =/
compthrow = RANDOM(0,1) /* choose a random number between */
/* 0 and 1 */
IF compthrow = userthrow THEN
outcome = 'human' /* user chose correctly */
ELSE
outcome = 'machine'’ /* user didn't choose correctly =*/

RETURN outcome

Writing a Function

A function is a series of instructions that an exec invokes to perform a specific task
and return a value. As was described in L i iong” , a
function may be built-in or user-written. An exec invokes a user-written function the
same way it invokes a built-in function — by the function name immediately

Chapter 6. Writing Subroutines and Functions 77

Writing a Function

followed by parentheses with no blanks in between. The parentheses can contain
up to 20 arguments or no arguments at all.

function(argumentl, argument2,...)

or

function()

A function requires a returned value because the function call generally appears in
an expression.

x = function(argumentsl, argument2,...)

When the function ends, it may use the RETURN instruction to send back a value
to replace the function call.

instruction(s)

v

x=func1(arg1,arg2)

instruction(s)
EXIT

v

Func1:

instruction(s)

RETURN value
L

Functions may be internal and designated by a label, or external and designated
by the data set member name that contains the function. The previous example
illustrates an internal function named "funci1".

IMPORTANT NOTE

Because internal functions generally appear after the main part of the exec,
when you have an internal function, it is important to end the main part of the
exec with the EXIT instruction.

The following illustrates an external function named "func2".

78 2/0S V1R2.0 TSO/E REXX User's Guide

Writing a Function

REXX.EXEC(MAIN)

instruction(s)
\/

x=func2(arg1)

instruction(s)

exit

v

REXX.EXEC(FUNC2)

ARG var1
instruction(s)

RETURN value
|

To determine whether to make a function internal or external, you might consider
factors, such as:

» Size of the function. Very large functions often are external, whereas small
functions fit easily within the calling exec.

* How you want to pass information. It is quicker to pass information through
variables in an internal function. This method is described in the next topic under

* Whether the function might be of value to more than one exec or user. If so, an
external function is preferable.

» Performance. The language processor searches for an internal function before it
searches for an external function. For the complete search order of functions,
See g H ”

Passing Information to a Function

When an exec and its internal function share the same variables, you can use
commonly shared variables to pass information between caller and internal function.
The function does not need to pass arguments within the parentheses that follow
the function call. However, all functions, both internal and external, must return a
value.

Passing Information by Using Variables

When an exec and its internal function share the same variables, the value of a
variable is what was last assigned, regardless of whether the assignment was in the
main part of the exec or in the function. In the following example, the value of
answer is assigned in the function and displayed in the main part of the exec. The
variables numberl, number2, and answer are shared. In addition, the value of answer
replaces the function call because answer follows the RETURN instruction.

Chapter 6. Writing Subroutines and Functions 79

Writing a Function

— Example of Passing Information in a Variable

[FHrk gk rk Rk kR kR Rk Rk Rk Rk Rk krhrxkx REXX *kdhsrhdhdhrhsmrhrhhrhrrhrhmrrsrs/

/* This exec receives a calculated value from an internal */
/* function and displays that value. */
/********************************** *k*k *k*k *k*k *k*k *****/

numberl = 5

number2 = 10

SAY add() /* Displays 15 */
SAY answer /* Also displays 15 */
EXIT

add:

answer = numberl + number2
RETURN answer

Using the same variables in an exec and its internal function can sometimes create
problems. In the following example, the main part of the exec and the function use
the same control variable, "i", for their DO loops. As a result, the DO loop repeats
only once in the main exec because the function returns to the main exec with i =
6.

— Example of a Problem Caused by Passing Information in a Variable

[rkKkkkkkkkkkkkkkkkkkkkkkkkkkkk REXX #dhddkrhhhkrhhkrhhhrhhhrhhhrrrscrr/
/* This exec uses an instruction in a DO Toop to call an internal x/
/* function. A problem occurs because the function also uses a DO */
/* loop with the same control variable as the main exec. The DO */

/* loop in the main exec repeats only once. */
/***/

numberl = 5

number2 = 10

DO i =1T05

SAY add() /* Displays 105 */

END

EXIT

add:

DO i =1T05

answer = numberl + number?2
numberl = number2
number2 = answer

END

RETURN answer

To avoid this kind of problem in an internal function, you can use:
» The PROCEDURE instruction as described in the next topic.
« Different variable names in a function.

Protecting Variables with the PROCEDURE Instruction: When you use the
PROCEDURE instruction immediately following the function label, all variables used
in the function become local to the function and are shielded from the main part of
the exec. You can also use the PROCEDURE EXPOSE instruction to protect all but
a few specified variables.

80 2/0S V1R2.0 TSO/E REXX User's Guide

Writing a Function

The following two examples show the differing results when a function uses the

PROCEDURE instruction and when it doesn't.

— Example Using the PROCEDURE Instruction

/* within its function.

/****************************** REXX *******************************/
/* This exec uses a PROCEDURE instruction to protect the variables */

P

*/

numberl = 10
SAY pass() number2
EXIT

pass: PROCEDURE
numberl = 7
number2 = 5
RETURN numberl

/* Displays 7 NUMBER2 =*/

— Example Without the PROCEDURE Instruction

/* variables within its function.

numberl = 10
SAY pass() number2

EXIT
pass:
numberl = 7
number2 = 5

RETURN numberl

[*kF ok kk ok kkkkkkkkkkkkkkkkkkkkkkhk REXX *okrhdhdkrhhdkrhhhrhhhrhhhrrrrrr/

/* This exec does not use a PROCEDURE instruction to protect the =*/

/***/

/* displays 7 5 =/

*/

Exposing Variables with PROCEDURE EXPOSE: To protect all but specific
variables, use the EXPOSE option with the PROCEDURE instruction, followed by

the variables that are to remain exposed to the function.

— Example Using PROCEDURE EXPOSE

/* expose one variable, numberl, in its function.

numberl = 10
SAY pass() numberl
EXIT

pass: PROCEDURE EXPOSE numberl
numberl = 7

number2 = 5

RETURN number2

[FHrk kR kR kR RR IR R AR I I AR R AR A** REXX *krhdrhhhhrhhrhbhhrhrrhrhrrrsrs/

/* This exec uses a PROCEDURE instruction with the EXPOSE option tox/

/** """" khkhkhkhkhhhhkhhhkrhhhrkrhhrrdhrdhrx% ******************************/

/* displays 5 7 */

*/

For more information about the PROCEDURE instruction, see [zZ0S TSO/F REXX
Beferencd

Passing Information by Using Arguments

A way to pass information to either internal or external functions is through
arguments. You can pass up to 20 arguments separated by commas in a function

call.

Chapter 6. Writing Subroutines and Functions 81

Writing a Function

function(argumentl,argument2,argument3,..........)

Using the ARG Instruction: The function can receive the arguments with the
ARG instruction. Arguments are also separated by commas in the ARG instruction.

ARG argl,arg2,arg3

The names of the arguments on the function call and the ARG instruction do not
have to be the same because information is not passed by argument name but by
position. The first argument sent becomes the first argument received and so forth.
You can also set up a template in the function call, which is then used in the
corresponding ARG instruction. For information about parsing templates, see

The following exec sends information to an internal function that computes the
perimeter of a rectangle. The function returns a value in the variable perim that is
specified after the RETURN instruction. The main exec uses the value in perim to
replace the function call.

——— Example of an Internal Function

/ * REXX /
/* This exec receives as arguments the length and width of a */
/* rectangle and passes that information to an internal function */
/* named perimeter. The function then calculates the perimeter of */

/* the rectangle. */
/ /
PARSE ARG long wide i
SAY 'The perimeter is' perimeter(long,wide) 'inches.’
EXIT |
perimeter:

ARG length, width
perim = 2 * length + 2 * width
RETURN perim

Notice the positional relationships between Tong and Tength, and wide and width.
Also notice that information is received from variable perim to replace the function
call.

Using the ARG Built-in Function: Another way for a function to receive
arguments is with the ARG built-in function. This built-in function returns the value
of a particular argument specified by a number that represents the argument
position.

For instance, in the previous example, instead of the ARG instruction,
ARG Tength, width

you can use the ARG function as follows:

length = ARG(1) /* puts the first argument into length x/
width = ARG(2) /* puts the second argument into width */

More information about the ARG function appears in 2ZQS TSO/F REXX Referencd.

82 2/0S V1R2.0 TSO/E REXX User's Guide

Writing a Function

Receiving Information from a Function

Although a function can receive up to 20 arguments in a function call, it can specify
only one expression on the RETURN instruction. That expression can be a:

* Number
RETURN 55

* One or more variables whose values are substituted or when no values were
assigned, return their names

RETURN valuel value2 value3

* Literal string
RETURN 'Work complete.'

» Arithmetic, comparison, or logical expression whose value is substituted.
RETURN 5 * number

Exercise - Writing a Function
Write a function named "AVG" that receives a list of numbers separated by blanks,
and computes their average as a decimal number. The function is called as follows:

AVG (numberl number2 number3 ...)

Use the WORDS and WORD built-in functions. For more information about these
built-in functions, see /0S8 TSQ/F REXX Referencd

ANSWER

— Possible Solution

[k gk ok dok ok ok ok ok ok ok k ok ke kok ok R REXX *kkskskkkkkrrhhhokskhkkkrrhhkhkkkk *%/
/* This function receives a list of numbers, adds them, computes =*/
/* their average and returns the average to the calling exec. */

/***/
ARG numlist /* receive the numbers in a single variable */
sum = 0 /* initialize sum to zero */

DO n = 1 TO WORDS(numlist) /* Repeat for as many times as there */

/* are numbers x/
number = WORD(numlist,n) /* Word #n goes to number */
sum = sum + number /* Sum increases by number */

END
average = sum / WORDS(numlist) /* Compute the average */

RETURN average

Summary of Subroutines and Functions

SUBROUTINES FUNCTIONS
Invoked by using the CALL instruction followed by the Invoked by specifying the function’s name immediately
subroutine name and optionally up to 20 arguments. followed by parentheses that optionally contain up to 20
arguments.

Chapter 6. Writing Subroutines and Functions 83

Summary of Subroutines and Functions

SUBROUTINES

FUNCTIONS

Can be internal or external

Internal

— Can pass information by using common variables

— Can protect variables with the PROCEDURE
instruction

— Can pass information by using arguments

External

— Must pass information by using arguments

— Can use the ARG instruction or the ARG built-in
function to receive arguments

Can be internal or external

Internal

— Can pass information by using common variables

— Can protect variables with the PROCEDURE
instruction

— Can pass information by using arguments

External

— Must pass information by using arguments

— Can use the ARG instruction or the ARG built-in
function to receive arguments

Uses the RETURN instruction to return to the caller.

Uses the RETURN instruction to return to the caller.

Might return a value to the caller.

Must return a value to the caller.

Returns a value by placing it into the REXX special
variable RESULT.

Returns a value by replacing the function call with the
value.

84 2/0S Vi1R2.0 TSO/E REXX User's Guide

Chapter 7. Manipulating Data

Using Compound Variablesand Stems85
What is a Compound Variable?.85
UsingStems.86

Exercises - Using Compound Variables and Stems87

ParsingData.87

Instructions that Parse .88
PULL Instructon .88
ARG Instructon88
PARSE VAR Instruction.89
PARSE VALUE ... WITH Instruction89

Ways of Parsing89
Blank L. L0089
String L L. 09
Variable9
Number9

Parsing Multiple Strings as Arguments92
Exercise - Practice with Parsing93

This chapter describes how to use compound variables and stems, and shows
various ways of parsing using templates.

Using Compound Variables and Stems

Sometimes it is useful to store groups of related data in such a way that the data
can be easily retrieved. For example, a list of employee names can be stored in an
array and retrieved by number. An array is an arrangement of elements in one or
more dimensions, identified by a single name. You could have an array called
employee that contains names as follows:
EMPLOYEE

(1) Adams, Joe

(2) Crandall, Amy

(3) Devon, David

(4) Garrison, Donna

(5) Leone, Mary

(6) Sebastian, Isaac

In some computer languages, you access an element in the array by the number of
the element, such as, employee(1), which retrieves Adams, Joe. In REXX, you use
compound variables.

What is a Compound Variable?

Compound variables are a way to create a one-dimensional array or a list of
variables in REXX. Subscripts do not necessarily have to be numeric. A compound
variable contains at least one period with characters on both sides of it. The
following are examples of compound variables.

FRED.5

Array.Row.Col
employee.name.phone

The first variable in a compound variable always remains a symbol with no
substitution. The remaining variables in a compound variable take on values
previously assigned. If no value was previously assigned, the variable takes on the
uppercase value of the variable name.

© Copyright IBM Corp. 1988, 2001 85

Using Compound Variables and Stems

Using Stems

first = '"Fred'
last = 'Higgins'
employee = first.last

/* EMPLOYEE is assigned FIRST.Higgins */
SAY employee.first.middle.last
/* Displays EMPLOYEE.Fred.MIDDLE.Higgins =/

You can use a DO loop to initialize a group of compound variables and set up an
array.
DOi=1T06

SAY 'Enter an employee name.'

PARSE PULL employee.i
END

If you entered the same names used in the previous example of an array, you
would have a group of compound variables as follows:

employee.l = 'Adams, Joe'
employee.2 = 'Crandall, Amy'
employee.3 = 'Devon, David'
employee.4 = 'Garrison, Donna'
employee.5 = 'Leone, Mary'
employee.6 = 'Sebastian, Isaac'

When the names are in the group of compound variables, you can easily access a
name by its number, or by a variable that represents its number.

name = 3

SAY employee.name /* Displays 'Devon, David' */

For more information about compound variables, see [z20S TSO/F REXX

When working with compound variables, it is often useful to initialize an entire

collection of variables to the same value. You can do this easily with a stem. A
stem is the first variable name and first period of the compound variable. Thus
every compound variable begins with a stem. The following are stems:

FRED.

Array.
employee.

You can alter all the compound variables in an array through the stem. For
example, to change all employee names to Nobody, issue the following assignment
instruction:

employee. = 'Nobody'

As a result, all compound variables beginning with employee., whether or not they
were previously assigned, return the value Nobody. Compound variables that are
assigned after the stem assignment are not affected.

SAY employee.b /* Displays 'Nobody' */
SAY employee.10 /* Displays 'Nobody' */
SAY employee.oldest /* Displays 'Nobody' */

employee.new = 'Clark, Evans'
SAY employee.new /* Displays 'Clark, Evans' */

You can use stems with the EXECIO command when reading to and writing from a
data set. For information about the EXECIO command, see Ellsing EXECIQ td

Emce.ss_LniatmaiLan_to_aad_ttam_Daia_SeisLan_pageJ.SAJ You can also use stems

86 2/0S V1R2.0 TSO/E REXX User's Guide

Using Compound Variables and Stems

with the OUTTRAP external function when trapping command output. For

information about OUTTRAP, see ['Using the OUTTRAP Function” on page 123.

Exercises - Using Compound Variables and Stems
1. After these assignment instructions, what is displayed in the following SAY

instructions?
a=3 /* assigns '3' to variable 'A' =/
b=4 /* 4" to B! x/
¢ = 'last’ /* 'last' to 'c' ox/
a.b =2 /* '2' to 'A4Y x/
a.c =5 /* '5' to 'A.last' =/
x.a.b = 'cv3d' /* 'cv3d' to 'X.3.4" %/
a. SAY a
b. SAYB
c. SAYc
d. SAY a.a
e. SAYAB
f. SAY b.c
g. SAYca
h. SAY a.first
i. SAY x.a4

2. After these assignment instructions, what is displayed?
hole.1 = 'full'

hole. = 'empty'
hole.s = 'full'

a. SAY hole.1
b. SAY hole.s
c. SAY hole.mouse

ANSWERS

1.
3
4
last
A.3
2
B.last
C.3
A.FIRST
cv3d

mS@Tmeoo0 T

empty
full
empty

oow

Parsing Data

Parsing in REXX is separating data into one or more variable names. An exec can
parse an argument to break it up into smaller parts or parse a string to assign each
word to a variable name. Parsing is also useful to format data into columns.

Chapter 7. Manipulating Data 87

Parsing Data

Instructions that Parse

There are several REXX instructions and variations of instructions that parse data.

PULL Instruction
In earlier chapters PULL was described as an instruction that reads input from the
terminal and assigns it to one or more variables. If however, the data stack contains
information, the PULL instruction takes information from the data stack; and when
the data stack is empty, PULL takes information from the terminal. For information
about the data stack, see Chapter 11_Storing Information in the Data Stack” on

. PULL changes character information to uppercase and assigns it to one
or more variable names. When PULL is followed by more than one variable, it
parses the information into the available variables.

SAY 'What is the quote for the day?' /* user enters "Knowledge =/
/* is power." */

PULL wordl word2 word3
/* wordl contains 'KNOWLEDGE' =/
/* word2 contains 'IS' */
/* word3 contains 'POWER.' */

The PARSE PULL instruction assigns information, without altering it, to variable
names.
SAY 'What is the quote for the day?' /* user enters "Knowledge =*/
/* s power." */

PARSE PULL wordl word2 word3

/* wordl contains 'Knowledge' =/

/* word2 contains 'is' */

/* word3 contains 'power.' */

PARSE UPPER PULL causes the same result as PULL in that it changes character
information to uppercase before assigning it to one or more variables.

ARG Instruction

The ARG instruction takes information passed as arguments to an exec, function, or
subroutine, and puts it into one or more variable names. Before character
information is put into a variable name, ARG changes it to uppercase. When ARG is
followed by more than one variable name, it parses the information into the
available variable names. For example, if an exec named
USERID.REXX.EXEC(QUQOTE) can receive arguments, you can invoke the exec
with the EXEC command and the three arguments as follows:

EXEC rexx.exec(quote) 'Knowledge is power.' exec

The exec receives the arguments with the ARG instruction as follows:

ARG wordl word2 word3
/* wordl contains 'KNOWLEDGE' =/
/* word2 contains 'IS' */
/* word3 contains 'POWER.' */

The PARSE ARG instruction assigns information, without altering it, to variable
names.
PARSE ARG wordl word2 word3

/* wordl contains 'Knowledge' =/

/* word2 contains 'is' */

/* word3 contains 'power.' */

PARSE UPPER ARG causes the same result as ARG in that it changes character
information to uppercase before assigning it to one or more variables.

88 2/0S V1R2.0 TSO/E REXX User's Guide

Parsing Data

PARSE VAR Instruction
The PARSE VAR instruction parses a specified variable into one or more variable
names that follow it. If the variable contains character information, it is not changed
to uppercase.
quote = 'Knowledge is power.'
PARSE VAR quote wordl word2 word3

/* wordl contains 'Knowledge' =*/

/* word2 contains 'is' */

/* word3 contains 'power.' */

The PARSE UPPER VAR instruction changes character information to uppercase
before putting it into the variables.
quote = 'Knowledge is power.'
PARSE UPPER VAR quote wordl word2 word3
/* wordl contains 'KNOWLEDGE' =/
/* word2 contains 'IS' */
/* word3 contains 'POWER.' */

For more information about parsing instructions, see /0S8 TSQ/E REXX Referenca.

PARSE VALUE ... WITH Instruction
The PARSE VALUE ... WITH instruction parses a specified expression, such as a
literal string, into one or more variable names that follow the WITH subkeyword. If
the literal string contains character information, it is not changed to uppercase.
PARSE VALUE 'Knowledge is power.' WITH wordl word2 word3

/* wordl contains 'Knowledge' =x/

/* word2 contains 'is' */

/* word3 contains 'power.' */

The PARSE UPPER VALUE instruction changes character information to uppercase
before assigning it to the variable names.
PARSE UPPER VALUE 'Knowledge is power.' WITH wordl word2 word3

/* wordl contains 'KNOWLEDGE' =/

/* word2 contains 'IS' */
/% word3 contains 'POWER.' */

Ways of Parsing

Parsing separates data by comparing the data to a template (or pattern of variable
names). Separators in a template can be a blank, string, variable, or number that
represents column position.

Blank

The simplest template is a group of variable names separated by blanks. Each
variable name gets one word of data in sequence except for the last, which gets the
remainder of the data. The last variable name might then contain several words and
possibly leading and trailing blanks.

PARSE VALUE 'Value with Blanks.' WITH pattern type

/* pattern contains 'Value' */
/* type contains ' with Blanks.' =/

When there are more variables than data, the extra variables are set to null.
PARSE VALUE 'Value with Extra Variables.' WITH datal data2 data3 data4 datab

/* datal contains 'Value' */
/* data2 contains 'with' */
/* data3 contains 'Extra' */
/* data4 contains 'Variables.' */
/* data5 contains "' */

Chapter 7. Manipulating Data 89

Parsing Data

A period in a template acts as a place holder. The data that corresponds to the
period is not assigned to a variable name. You can use a period as a "dummy
variable" within a group of variables or at the end of a template to collect unwanted

information.
PARSE VALUE 'Value with Periods in it.' WITH pattern . type .
/* pattern contains 'Value' */
/* type contains 'Periods’ */
/* the periods replace the words "with" and "in it." =/
String

You can use a string in a template to separate data as long as the data includes the
string as well. The string becomes the point of separation and is not included as

data.
phrase = 'To be, or not to be?' /* phrase containing comma */
PARSE VAR phrase partl ',' part2 /* template containing comma */
/* as string separator */
/* partl contains 'To be' */

/* part2 contains ' or not to be?' */
In this example, notice that the comma is not included with "To be’ because the
comma is the string separator.

Variable

When you do not know in advance what string to specify as separator in a
template, you can use a variable enclosed in parentheses. The variable value must
be included in the data.

separator = ',
phrase = 'To be, or not to be?'
PARSE VAR phrase partl (separator) part2
/* partl contains 'To be' */
/* part2 contains ' or not to be?' */

Again, in this example, notice that the comma is not included with "To be’ because
the comma is the string separator.

Number

You can use numbers in a template to indicate the column at which to separate
data. An unsigned integer indicates an absolute column position and a signed
integer indicates a relative column position.

* Absolute column position

An unsigned integer or an integer prefixed with an equal sign (=) in a template
separates the data according to absolute column position. The first segment
starts at column 1 and goes up to, but does not include, the information in the
column number specified. The subsequent segments start at the column
numbers specified.

quote = 'Ignorance is bliss.'

PARSE VAR quote partl 5 part2
/* partl contains 'Igno' */
/* part2 contains 'rance is bliss.' =/

This example could have also been coded as follows. Note the explicit use of the
column 1 indicator prior to part1 that was implied in the previous example and
the use of the =5 part2 to indicate the absolute position, column 5.

quote = 'Ignorance is bliss.'

90 2/0S V1R2.0 TSO/E REXX User's Guide

Parsing Data

PARSE VAR quote 1 partl =5 part2
/* partl contains 'Igno' */
/* part2 contains 'rance is bliss.' */

When a template has more than one number, and a number at the end of the
template is lower than an earlier number, parse loops back to the beginning of
the data.

quote = 'Ignorance is bliss.'

PARSE VAR quote partl 5 part2 10 part3 1 part4d

/* partl contains 'Igno' */
/* part2 contains 'rance’ */
/* part3 contains ' is bliss.' */

/* part4 contains 'Ignorance is bliss.' */

When each variable in a template has column numbers both before and after it,
the two numbers indicate the beginning and the end of the data for the variable.

quote = 'Ignorance is bliss.'

PARSE VAR quote 1 partl 10 11 part2 13 14 part3 19 1 part4 20

/* partl contains 'Ignorance' */
/* part2 contains 'is' */
/* part3 contains 'bliss' */

/* part4 contains 'Ignorance is bliss.' */
Relative column position

A signed integer in a template separates the data according to relative column
position, that is, a starting position relative to the starting position of the
preceding part. A signed integer can be either positive (+) or negative (-) causing
the part to be parsed to shift either to the right (with a +) or to the left (with a -).
parti starts at column 1, the preceding 1 is not coded but implied. In the
following example, therefore, the +5 part2 causes part2 to start in column 1+5=6,
the +5 part3 causes part3 to start in column 6+5=11, and so on.

quote = 'Ignorance is bliss.'

PARSE VAR quote partl +5 part2 +5 part3 +5 partd

/* partl contains 'Ignor' */
/* part2 contains 'ance ' */
/* part3 contains 'is bl' */
/* part4 contains 'iss.' */

The use of the minus sign is similar to the use of the plus sign in that it is used
to identify a relative position in the data string. The minus sign is used to “back
up” (move to the left) in the data string. In the following example, therefore, the
part1 causes part1 to start in column 1 (implied), the +70 part2 causes part2 to
start in column 1+10=11, the +3 part3 causes part3 to start in column 11+3=14,
and the -3 part4 causes part4 to start in column 14-3=11.

quote = 'Ignorance is bliss.'

PARSE VAR quote partl +10 part2 +3 part3 -3 partd

/* partl contains 'Ignorance ' */
/* part2 contains 'is ' */
/* part3 contains 'bliss.’ */
/* part4 contains 'is bliss.' x/

Variables

Chapter 7. Manipulating Data 91

Parsing Data

You can define and use variables to provide further flexibility of a PARSE VAR
instruction. Define the variable prior to the parse instruction, such as the movex
variable in the following example. With the PARSE instruction, enclose the
variable in parenthesis, in place of a number. This variable must be an unsigned
integer. Therefore, use a sign outside the parenthesis to indicate how REXX is to
interpret the unsigned integer. REXX substitutes the numeric value for the
variable as follows:

quote = 'Ignorance is bliss.'

movex = 3 /* variable position */
PARSE VAR quote part5 +10 part6 +3 part7 -(movex) part8
/* part5 contains 'Ignorance ' x/
/* part6 contains 'is ' */
/* part7 contains 'bliss.’ */
/* part8 contains 'is bliss.' */

Note: The variable movex in the previous example must be an unsigned integer.
Always code a sign prior to the parenthesis to indicate how the integer is
to be interpreted. If you do not, the variable will be interpreted as a string
separator. Valid signs are:

— A plus sign (+) indicates column movement to the right
— A minus sign (-) indicates column movement to the left
— An equal sign (=) indicates an absolute column position.

For more information about parsing, see [zZ0S TSO/F REXX Referenca.

Parsing Multiple Strings as Arguments

When passing arguments to a function or a subroutine, you can specify multiple
strings to be parsed. Arguments are parsed with the ARG, PARSE ARG, and
PARSE UPPER ARG instructions.

To pass multiple strings, separate each string with a comma. This comma is not a
string separator as illustrated in the example on page Bd, although you can also
use a string separator within an argument template.

The following example passes three arguments separated by commas to an internal
subroutine. The first argument consists of two words "String One" that are parsed
into three variable names. The third variable name is set to null because there is no
third word. The second and third arguments are parsed entirely into variable names
string2 and string3.

CALL sub2 'String One', 'String Two', 'String Three'

EXIT

sub2:

PARSE ARG wordl word2 word3, string2, string3
/* wordl contains 'String' */
/* word2 contains 'One’ */
/* word3 contains "' */

/* string2 contains 'String Two' */
/* string3 contains 'String Three' =/

For more information about passing multiple arguments, see /0S8 TSQ/E REXX

92 2/0S V1R2.0 TSO/E REXX User's Guide

Parsing Data

Exercise - Practice with Parsing
What are the results of the following parsing examples?

1. quote = 'Experience is the best teacher.'
PARSE VAR quote wordl word2 word3

a) wordl =
b) word2 =
c) word3 =
2. quote = 'Experience is the best teacher.'
PARSE VAR quote wordl word2 word3 word4 word5 word6

a) word1 =
b) word2 =
c) word3 =
d) word4 =
e) word5 =
f) word6 =

3. PARSE VALUE 'Experience is the best teacher.' WITH wordl word2 . . word3
a) word1
b) word2
c) word3 =

4. PARSE VALUE 'Experience is the best teacher.' WITH vl 5 v2

a) vl =
b) v2 =
5. quote = 'Experience is the best teacher.'

PARSE VAR quote vl v2 15 v3 3 v4
a)vl =
b) v2 =
c)v3 =
d) v4 =
6. quote = 'Experience is the best teacher.'

PARSE UPPER VAR quote 15 v1 +16 =12 v2 +2 1 v3 +10
a)vl =
b) v2 =
c) v3 =
7. quote = 'Experience is the best teacher.'

PARSE VAR quote 1 vl +11 v2 +6 v3 -4 v4
a) vl =
b) v2 =
c) v3 =
d)vd =
8. first =7
quote = 'Experience is the best teacher.'

PARSE VAR quote 1 vl =(first) v2 +6 v3

a)vl =
b) v2 =
c) v3 =
9. quotel = 'Knowledge is power.'
quote2 = 'Ignorance is bliss.'
quote3 = 'Experience is the best teacher.'
CALL subl quotel, quote2, quote3
EXIT

Chapter 7. Manipulating Data

93

Parsing Data

subl:
PARSE ARG wordl . . , word2 . . , word3 .
a) word1 =
b) word2 =
c) word3 =

ANSWERS

1.
a) word1 = Experience
b) word2 = is
c) word3 = the best teacher.

2.

a) word1 = Experience

b) word2 = is

c) word3 = the

d) word4 = best

e) word5 = teacher.

f) word6 ="
3.

a) word1 = Experience

b) word2 = is

¢) word3 = teacher.
4,

a) vl = Expe

b) v2 = rience is the best teacher.
5.

a) v1 = Experience

b) v2 =is

c) v3 = the best teacher.

d) v4 = perience is the best teacher.
6.

a) vl = THE BEST TEACHER

b) v2 = IS

¢) v3 = EXPERIENCE
7.

a) vl = Experience’

b) v2 ="is the’

c) v3 =’ best teacher.’

d) v4 ="’ the best teacher.’
8.

a) vl = Experi’

b) v2 ="ence 1’

c) v3 =’s the best teacher.’
9.

a) word1 = Knowledge
b) word2 = Ignorance
¢) word3 = Experience

94 2/0S Vi1R2.0 TSO/E REXX User's Guide

Part 2. Using REXX

In addition to being a versatile general-purpose programming language, REXX can
interact with TSO/E, MVS, APPC/MVS, and ISPF, which expands its capabilities.
This part of the book is for programmers already familiar with the REXX language
and experienced in TSO/E. The chapters in this part cover the following topics.

+ [Chapter 8 Fntering Commands from an Fxec” on page 971 — A REXX exec can

issue different types of host commands within the same exec.

o [i i ithi > — Several
debugging options are available in an exec.

e [i ions” — TSO/E external
functions are provided to interact with the system to do specific tasks.

e b ' ion i 2 — The data

stack is useful in I/O and other types of special processing.

‘ H H ”

« EChapter 12_Processing Data and Input/Quiput Processing” on page 153 — You
can process information to and from data sets by using the EXECIO command.

3 H H ”

— You can run execs in other MVS address spaces besides TSO/E
foreground and background.

Note: Although you can write a REXX exec to run in a non-TSO/E address space
in MVS, the chapters and examples in this part, unless otherwise stated,
assume the exec will run in a TSO/E address space. If you want to write
execs that run outside of a TSO/E address space, keep in mind the following
exceptions to information in this part of the book.

* An exec that runs outside of a TSO/E address space cannot include TSO/E
commands, ISPF commands, or ISPF/PDF edit commands. An exec that runs
outside of a TSO/E address space can include TSO/E commands if you use the
TSO/E environment service (see note).

e An exec that runs outside of TSO/E cannot include most of the TSO/E external

functions. For information about the functions you can use in TSO/E and
non-TSO/E address spaces, see ['Services Available ta REXX Execs” on

* In TSO/E, several REXX instructions either display information on the terminal or
retrieve information that the user enters at the terminal. In a non-TSO/E address
space, these instructions get information from the input stream and write
information to the output stream.

— SAY — this instruction sends information to the output DD whose default is
SYSTSPRT.

— PULL — this instruction gets information from the input DD whose default is
SYSTSIN.

— TRACE — this instruction sends information to the output DD whose default is
SYSTSPRT.

— PARSE EXTERNAL — this instruction gets information from the input DD
whose default is SYSTSIN.

e An exec that runs outside of TSO/E cannot interact with CLISTs.

Note: You can use the TSO/E environment service, IKUITSOEYV, to create a TSO/E
environment in a non-TSO/E address space. If you run a REXX exec in the
TSO/E environment you created, the exec can contain TSO/E commands,
external functions, and services that an exec running in a TSO/E address
space can use. That is, the TSO host command environment (ADDRESS

© Copyright IBM Corp. 1988, 2001 95

TSO) is available to the exec with some limitations. For more information
about the TSO/E environment service, limitations on the environment it
creates, and the different considerations for running REXX execs within the

environment, see [0S TSO/F Programming Services.

96 2/0S V1R2.0 TSO/E REXX User's Guide

Chapter 8. Entering Commands from an Exec

Types of Commands. . . . e <V 4
Issuing TSO/E Commands from an Exec T | <
Using Quotations Marks in Commands98
Passing Data Set Names as Arguments.98
Using Variables in Commands 1)
Causing Interactive Commands to Prompt the User . e100
Invoking Another Exec as a Command.100
Invoking Another Exec with the EXEC Command T 0N
Invoking Another Exec Implicitly T (0
Issuing Other Types of Commands from an Exec P [0)
What is a Host Command Environment? 101
APPC/MVS Host Command Environments 104
Examples Using APPC/MVS Services 106
Changing the Host Command Environment106
Determining the Active Host Command Enwronment e 04
Checking if a Host Command Environment is Available 107
Examples Using the ADDRESS Instruction 107

This chapter describes how to issue TSO/E commands and other types of
commands from a REXX exec.

Types of Commands

A REXX exec can issue many types of commands. The two main categories of
commands are:

* TSO/E REXX commands - Commands provided with the TSO/E implementation

of the language. These commands do REXX-related tasks in an exec, such as:

— Control I/O processing of information to and from data sets (EXECIO)

— Perform data stack services (MAKEBUF, DROPBUF, QBUF, QELEM,
NEWSTACK, DELSTACK, QSTACK)

— Change characteristics that control the execution of an exec (EXECUTIL and
the immediate commands)

— Check for the existence of a host command environment (SUBCOM).

More information about these TSO/E REXX commands appears throughout the
book where the related task is discussed

* Host commands - The commands recognized by the host environment in which
an exec runs. A REXX exec can issue various types of host commands as
discussed in the remainder of this chapter.

When an exec issues a command, the REXX special variable RC is set to the
return code. An exec can use the return code to determine a course of action within
the exec. Every time a command is issued, RC is set. Thus RC contains the return
code from the most recently issued command.

© Copyright IBM Corp. 1988, 2001 97

Issuing TSO/E Commands from an Exec

Issuing TSO/E Commands from an Exec

Like a CLIST, a REXX exec can contain TSO/E commands to be executed when
the exec runs. An exec can consist of nothing but TSO/E commands, such as an
exec that sets up a user’s terminal environment by allocating the appropriate
libraries of data sets, or the exec can contain commands intermixed with REXX
language instructions.

Using Quotations Marks in Commands

Generally, to differentiate commands from other types of instructions, enclose the
command within single or double quotation marks. When issuing TSO/E commands
in an exec, it is recommended that you enclose them in double quotation marks. If
the command is not enclosed within quotation marks, it will be processed as an
expression and might end in error. For example, a word immediately followed by a
left parenthesis is processed by the language processor as a function call. Several
TSO/E commands, one of which is ALLOCATE, require keywords followed by
parentheses.

"ALLOC DA(NEW.DATA) LIKE(OLD.DATA) NEW"

If the ALLOCATE command in the example above was not enclosed in quotation
marks, the parentheses would indicate to the language processor that DA and LIKE
were function calls, and the command would end in an error.

Many TSO/E commands use single quotation marks within the command. For
example, the EXEC command encloses an argument within single quotation marks,
and other commands, such as ALLOCATE, require single quotation marks around
fully-qualified data set names.

EXEC myrexx.exec(add) '25 78 33' exec

ALLOC DA('USERID.MYREXX.EXEC') F(SYSEXEC) SHR REUSE

As REXX instructions, these commands can be entirely enclosed in double
quotation marks and still retain the single quotation marks for the specific
information within the command. For this reason, it is recommended that, as a
matter of course, you enclose TSO/E commands with double quotation marks.

"EXEC myrexx.exec(add) '25 78 33' exec"

"ALLOC DA('USERID.MYREXX.EXEC') F(SYSEXEC) SHR REUSE"

Remember that data set names beginning with your prefix (usually your user ID)
can be specified without the prefix and without quotation marks.

"ALLOC DA(MYREXX.EXEC) F(SYSEXEC) SHR REUSE"

More about data sets names and when to enclose them in quotation marks is
covered in the next topic.

Passing Data Set Names as Arguments
How you pass a data set name as an argument depends on the way you specify
the data set name and whether you invoke the exec explicitly or implicitly.

Ways to specify the data set name are controlled by the TSO/E naming
conventions, which define fully-qualified and non fully-qualified data sets. A
fully-qualified data set name specifies all three qualifiers including the prefix and
must appear within a set of quotation marks.

'userid.myrexx.exec'

98 2/0S V1R2.0 TSO/E REXX User's Guide

Issuing TSO/E Commands from an Exec

A non fully-qualified data set name can eliminate the prefix and is not enclosed
within quotation marks.

myrexx.exec

If you use the EXEC command to explicitly invoke an exec, the EXEC command
processor requires a set of single quotation marks around the argument. When
passing a non fully-qualified data set name as an argument, you need not add
additional quotation marks. The following EXEC command is issued at the READY
prompt and passes the data set name REXX.INPUT as an argument to the exec
contained in MYREXX.EXEC(TEST2). Both data sets are specified as non
fully-qualified data set names.

READY
EXEC myrexx.exec(test2) 'rexx.input' exec

When passing a fully-qualified data set name as an argument with the EXEC
command, you must include more than one set of quotation marks; one to indicate
it is a fully-qualified data set and one to indicate it is the argument to be passed.
Because TSO/E commands process two sets of single quotation marks as one and
do not recognize double quotation marks as does the language processor, you must
use three sets of single quotation marks. The following EXEC command passes
USERID.REXX.INPUT as an argument expressed as a fully-qualified data set
name.

READY
EXEC myrexx.exec(test2) 'userid.rexx.input'' exec

When passing a non fully-qualified data set name as an argument while implicitly
invoking the exec, you need no quotation marks.

READY
test2 rexx.input

To pass a fully-qualified data set name as an argument while implicitly invoking an
exec, enclose the data set name in a single set of quotation marks.

READY
test2 'userid.rexx.input'

Using Variables in Commands

When a variable is used in a TSO/E command, the variable cannot be within
quotation marks if its value is to be substituted. Only variables outside quotation
marks are processed by the language processor. For example, the variable name is
assigned the data set name MYREXX.EXEC. When name is used in a LISTDS
command, it must remain outside the quotation marks placed around the command.

name = myrexx.exec
"LISTDS" name "STATUS"

When a variable represents a fully-qualified data set name, the name must be
enclosed in two sets of quotation marks to ensure that one set of quotation marks
remains as part of the value.

name = "'project.rell.new'"
"LISTDS" name "STATUS"

Another way to ensure that quotation marks appear around a fully-qualified data set
name when it appears as a variable is to include them as follows:

name = project.rell.new
"LISTDS '"name"' STATUS"

Chapter 8. Entering Commands from an Exec 99

Issuing TSO/E Commands from an Exec

Causing Interactive Commands to Prompt the User

If your TSO/E profile allows prompting, when you issue an interactive command
without operands, you are prompted for operands. For example, when you issue the
LISTDS command from READY, you are prompted for a data set name.

READY
listds
ENTER DATA SET NAME -

To have TSO/E commands prompt you when the commands are issued from within
an exec, you can do one of two things:

* Run the exec explicitly with the EXEC command and use the PROMPT operand.
EXEC mynew.exec(create) exec prompt

» Use the PROMPT function within the exec. Because PROMPT is a function, it is
used as an expression within an instruction, such as an assignment instruction or
a SAY instruction. To turn prompting on, write:

saveprompt = PROMPT('ON') /* saveprompt is set to the previous
setting of PROMPT x/

To turn prompting off, write:
= PROMPT('OFF"') /* x is set to the previous setting of PROMPT =/

To find out the prompting status, write:
SAY PROMPT() /* displays either "ON" or "OFF" */

To reset prompting to a specific setting saved in variable saveprompt, write:

= prompt (saveprompt)

— Important Note
Neither of these options can override a NOPROMPT operand in your TSO/E
profile. Your TSO/E profile controls prompting for all commands issued in your
TSO/E session whether the commands are issued in line mode, in ISPF, in an
exec, or in a CLIST. To display your profile, issue the PROFILE command. To
change a profile from NOPROMPT to PROMPT, issue:

PROFILE PROMPT

Prompting by commands also depends on whether there are elements in the data
stack. If the data stack contains an element, the user at the terminal is not
prompted because the data stack element is used in response to the prompt. For

more information about the data stack, see LChapieuJ_Smung_Lnim:mannn_m_thd

Invoking Another Exec as a Command

100

Previously, this book discussed how to invoke another exec as an external routine
(tChapter 6 _Writing Subroutines and Functions” an page 69). You can also invoke
an exec from another exec explicitly with the EXEC command or implicitly by
member name. Like an external routine, an exec invoked explicitly or implicitly can
return a value to the caller with the RETURN or EXIT instruction. Unlike an external
routine, which passes a value to the special variable RESULT, the invoked exec
passes a value to the REXX special variable RC.

z/OS V1R2.0 TSO/E REXX User’'s Guide

Issuing TSO/E Commands from an Exec

Invoking Another Exec with the EXEC Command

To explicitly invoke another exec from within an exec, issue the EXEC command as
you would any other TSO/E command. The called exec should end with a RETURN
or EXIT instruction, ensuring that control returns to the caller. The REXX special
variable RC is set to the return code from the EXEC command. You can optionally
return a value to the caller on the RETURN or EXIT instruction. When control
passes back to the caller, the REXX special variable RC is set to the value of the
expression returned on the RETURN or EXIT instruction.

For example, to invoke an exec named MYREXX.EXEC(CALC) and pass it an
argument of four numbers, you could include the following instructions:

"EXEC myrexx.exec(calc) '24 55 12 38' exec"
SAY 'The result is' RC

'Calc' might contain the following instructions:

ARG numberl number2 number3 numbers
answer = numberl * (number2 + number3) - number4
RETURN answer

You might want to invoke an exec with the EXEC command rather than as an
external routine when the exec is not within the same PDS as the calling exec, or
when the PDSs of the two execs are not allocated to either SYSEXEC or
SYSPROC.

Invoking Another Exec Implicitly

To implicitly invoke another exec from within an exec, type the member name either
with or without %. Because it is treated as a command, enclose the member name
and the argument, if any, within quotation marks. As with any other implicitly
invoked exec, the PDSs containing the calling exec and the called exec must be
allocated to either SYSEXEC or SYSPROC. Remember that a % before the
member name reduces the search time because fewer files are searched.

For example, to implicitly invoke an exec named MYREXX.EXEC(CALC) and send
it an argument of four numbers, you could include the following instructions.

"%calc 24 55 12 38"
SAY 'The result is' RC

‘Calc' might contain the following instructions:

ARG numberl number2 number3 numbersd
answer = numberl * (number2 + number3) - number4
RETURN answer

Issuing Other Types of Commands from an Exec

A REXX exec in TSO/E can issue TSO/E commands, APPC/MVS calls, MVS
module invocations, ISPF commands, and ISPF/PDF EDIT commands. If you have
TSO/E CONSOLE command authority and an extended MCS console session is
active, you can also issue MVS system and subsystem commands in a REXX exec.
Each type of invocation is associated with a different host command environment.

What is a Host Command Environment?

An environment for executing commands is called a host command environment.
Before an exec runs, an active host command environment is defined to handle
commands issued by the exec. When the language processor encounters a
command, it passes the command to the host command environment for
processing.

Chapter 8. Entering Commands from an Exec 101

Issuing Other Types of Commands from an Exec

When a REXX exec runs on a host system, there is at least one default
environment available for executing commands.

The default host command environments available in TSO/E REXX are as follows:

TSO - the environment in which TSO/E commands and TSO/E REXX
commands execute in the TSO/E address space.

MVS - the environment in which TSO/E REXX commands execute in a
non-TSO/E address space.

LINK - an environment that links to modules on the same task level.

LINKMVS - an environment that links to modules on the same task level. This
environment allows you to pass multiple parameters to an invoked module, and
allows the invoked module to update the parameters. The parameters you pass
to the module include a length identifier.

LINKPGM - an environment that links to modules on the same task level. This
environment allows you to pass multiple parameters to an invoked module, and
allows the invoked module to update the parameters. The parameters you pass
to the module do not include a length identifier.

ATTACH - an environment that attaches modules on a different task level.

ATTCHMVS - an environment that attaches modules on a different task level.
This environment allows you to pass multiple parameters to an invoked module,
and allows the invoked module to update the parameters. The parameters you
pass to the module include a length identifier.

ATTCHPGM - an environment that attaches modules on a different task level.
This environment allows you to pass multiple parameters to an invoked module,
and allows the invoked module to update the parameters. The parameters you
pass to the module do not include a length identifier.

ISPEXEC - the environment in which ISPF commands execute.

ISREDIT - the environment in which ISPF/PDF EDIT commands execute.
CONSOLE - the environment in which MVS system and subsystem commands
execute. To use the CONSOLE environment, you must have TSO/E CONSOLE

command authority and an extended MCS console session must be active. You
use the TSO/E CONSOLE command to activate an extended MCS console

session. See [0S TSO/F System Programming Command Referencd, for more

information about using the CONSOLE command.
CPICOMM - the environment that allows you to invoke the SAA common
programming interface (CPI) Communications calls.

LUG62 - the environment that allows you to invoke the APPC/MVS calls that are
based on the SNA LU 6.2 architecture. These calls are referred to as
APPC/MVS calls throughout the book.

APPCMVS - the environment that allows you to access MVS/APPC callable
services related to server facilities and for the testing of transaction programs.

In a non-TSO/E environment, TSO/E REXX provides the following host command
environments:

MVS (the initial host command environment)
LINK

LINKMVS

LINKPGM

ATTACH

ATTCHMVS

ATTCHPGM

102 2/0S ViR2.0 TSO/E REXX User's Guide

Issuing Other Types of Commands from an Exec

+ CPICOMM
* LUB2
* APPCMVS

From TSO/E READY mode, TSO/E REXX provides the following host command
environments:

* TSO (the initial host command environment)
« MVS

« LINK

* LINKMVS
* LINKPGM
* ATTACH

« ATTCHMVS
+ ATTCHPGM
*+ CONSOLE
+ CPICOMM
« LUB2

+ APPCMVS

In ISPF, TSO/E REXX provides the following host command environments:
* TSO (the initial host command environment)
« MVS

« LINK

* LINKMVS

* LINKPGM

« ATTACH

+ ATTCHMVS

+ ATTCHPGM

* ISPEXEC

* ISREDIT

»+ CONSOLE

+ CPICOMM

« LUB2

+ APPCMVS

Note: These lists of host command environments represent the defaults. Your
installation may have added or deleted environments.

The default host command environment for execs running in TSO/E and ISPF is
TSO. Thus all commands are sent to TSO/E for processing, unless the exec
changes the host command environment.

When an exec runs in an MVS environment, TSO/E command processors and
services are not available to it. For more information, see L i i

. In an MVS host command environment, you can issue
many of the TSO/E REXX commands, such as EXECIO, MAKEBUF, and
NEWSTACK.

Chapter 8. Entering Commands from an Exec 103

Issuing Other Types of Commands from an Exec

APPC/MVS Host Command Environments
The CPICOMM environment enables you to invoke the SAA CPI Communications

calls and the LU62 and APPCMVS environments enable you to invoke APPC/MVS
calls. You can write transaction programs in the REXX language, using the LU6G2,
CPICOMM, or APPCMVS host command environments, to issue APPC calls to a
partner transaction program. The CPICOMM host command environment allows
transaction programs written in the REXX language to be ported across SAA
environments. The LU62 host command environment allows you to use specific
features of MVS in conversations with transaction programs on other systems.
APPCMVS allows you to access APPC/MVS callable services related to server
facilities and for the testing of transaction programs. Each of these host command
environments enable REXX programs to communicate with other programs on the
same MVS system, different MVS systems, or different operating systems in an
SNA network.

The following APPC/MVS calls are supported under the APPCMVS host command
environment:

» ATBCUCH1 (Cleanup_TP(Unauthorized))
* ATBGTE2 (Get_Event)

* ATBPOR2 (Post_on_Receipt)

* ATBQAQ2 (Query_Allocate_Query)

» ATBRAL2 (Receive_Allocate)

* ATBRFA2 (Register_for_Allocate)

* ATBRJC2 (Reject_Conversation)

* ATBSAQ2 (Set_Allocate_Queue_Attributes)

* ATBSCA2 (Set_Conversation_Accounting_Information)
» ATBSTEZ2 (Set_Event_Notification)

* ATBTEA1 (Accept_Test)

 ATBTERT1 (Register_Test)

« ATBTEU1 (Unregister_Test)

* ATBURA2 (Unregister_for_Allocates)

» ATBVERS (MVS_Version_Check)

The following SAA CPI Communications calls are supported under the CPICOMM
host command environment:

« CMACCP (Accept_Conversation)

* CMALLC (Allocate)

*+ CMCFM (Confirm)

*« CMCFMD (Confirmed)

 CMDEAL (Deallocate)

* CMECS (Extract_Conversation_State)
* CMECT (Extract_Conversation_Type)
* CMEMN (Extract_Mode_Name)

¢ CMEPLN (Extract_Partner_LU_Name)
* CMESL (Extract_Sync_Level)

¢ CMFLUS (Flush)

* CMINIT (Initialize_Conversation)

» CMPTR (Prepare_To_Receive)

* CMRCV (Receive)

z/OS V1R2.0 TSO/E REXX User’'s Guide

Issuing Other Types of Commands from an Exec

* CMRTS (Request_To_Send)

* CMSCT (Set_Conversation_Type)

* CMSDT (Set_Deallocate_Type)
 CMSED (Set_Error_Direction)

*+ CMSEND (Send_Data)

» CMSERR (Send_Error)

+ CMSF (Set_Fill)

* CMSLD (Set_Log_Data)

« CMSMN (Set_Mode_Name)

* CMSPLN (Set_Partner_LU_Name)

* CMSPTR (Set_Prepare_To_Receive_Type)
* CMSRC (Set_Return_Control)

* CMSRT (Set_Receive_Type)

* CMSSL (Set_Sync_Level)

* CMSST (Set_Send_Type)

*+ CMSTPN (Set_TP_Name)

« CMTRTS (Test_Request_To_Send_Received)

The SAA CPI Communications calls are described in SAA Common Programming
Interface Communications Reference.

The following APPC/MVS calls are supported under the LU62 host command
environment:

« ATBALC2 (Allocate)

» ATBALLC (Allocate)

* ATBCFM (Confirm)

* ATBCFMD (Confirmed)

» ATBDEAL (Deallocate)

* ATBFLUS (Flush)

+ ATBGETA (Get_Attributes)

* ATBGETC (Get_Conversation)
* ATBGETP (Get_TP_Properties)
 ATBGETT (Get_Type)

+ ATBGTAZ2 (Get_Attribute)

* ATBPTR (Prepare_To_Receive)
» ATBRCVI (Receive_Immediate)
* ATBRCVW (Receive_And_Wait)
» ATBRTS (Request_To_Send)

* ATBSEND (Send_Data)

+ ATBSERR (Send_Error)

Note: The numeric suffix within the service name indicates the MVS release in
which the service was introduced and thereby also available in all
subsequent releases, as follows:

none MVS SP4.2 service. For example, ATBGETA
1 MVS SP4.2.2 service. For example, ATBTEA1

Chapter 8. Entering Commands from an Exec 105

Issuing Other Types of Commands from an Exec

2 MVS SP4.3 service. For example, ATBALC2

Therefore, your z/OS base control program (BCP) must be at least at the
indicated level to take advantage of these services.

The parameters for these services and the requirements for using them in
APPC/MVS transaction programs are described in 1

Examples Using APPC/MVS Services
The following example illustrates the syntax for invoking an SAA CPI
Communications call under the CPICOMM host command environment:

CPICOMM Example

/* REXX */
ADDRESS CPICOMM 'CMALLC conversation_id return_code'
if return_code = CM_OK then say 'OK!'

else say 'Why not?'

The following example illustrates the syntax for invoking an APPC/MVS call under
the LU62 host command environment:

LU62 Example

/* REXX */
ADDRESS LU62 'ATBDEAL conversation_id deallocate_type',
'notify_type return_code'

Whenever you issue an SAA CPlI Communications call or APPC/MVS call from a
REXX program, the entire call must be enclosed in single or double quotes.

SAA CPI Communications calls and APPC/MVS calls can use pseudonyms rather
than integer values. In the CPICOMM example, instead of comparing the variable
return_code to an integer value of 0, the example compares return_code to the
pseudonym value CM_OK. The integer value for CM_OK is 0. TSO/E provides two
pseudonym files, one for the LU62 host command environment and one for the
CPICOMM host command environment. These files define the pseudonyms and
their integer values. The LU62 pseudonym file is REXAPPC1, and the CPICOMM
pseudonym file is REXAPPC2. Both files are found in SYS1.SAMPLIB. You can
include this information from the pseudonym files in your REXX execs.

For more information about host command environments and pseudonym files, refer
to

Changing the Host Command Environment

106

You can change the host command environment either from the default or from
whatever environment was previously established. To change the host command
environment, use the ADDRESS instruction followed by the name of an
environment.

The ADDRESS instruction has two forms: one affects all commands issued after the
instruction, and one affects only a single command.

¢ All commands

z/OS V1R2.0 TSO/E REXX User’'s Guide

Issuing Other Types of Commands from an Exec

When an ADDRESS instruction includes only the name of the host command
environment, all commands issued afterward within that exec are processed as
that environment’s commands.

ADDRESS ispexec /* Change the host command environment to ISPF */
"edit DATASET("dsname")"

The ADDRESS instruction affects only the host command environment of the
exec that uses the instruction. When an exec calls an external routine, the host
command environment reverts back to the default environment, regardless of the
host command environment of the exec that called it. Upon return to the original
exec, the host command environment that was previously established by an
ADDRESS instruction is resumed.

* Single command

When an ADDRESS instruction includes both the name of the host command
environment and a command, only that command is affected. After the command
is issued, the former host command environment becomes active again.

/* Issue one command from the ISPF host command environment */
ADDRESS ispexec "edit DATASET("dsname")"
/* Return to the default TSO host command environment */

"ALLOC DA("dsname") F(SYSEXEC) SHR REUSE"

Note: Keywords, such as DATASET, within an ISPF command must be in
uppercase when used in a REXX instruction.

Determining the Active Host Command Environment

To find out what host command environment is currently active, use the ADDRESS
built-in function.

x = ADDRESS()

In this example, x is set to the active host command environment, for example,
TSO.

Checking if a Host Command Environment is Available

To check if a host command environment is available before trying to issue
commands to that environment, issue the TSO/E REXX SUBCOM command
followed by the name of the host command environment, such as ISPEXEC.

SUBCOM ISPEXEC

If the environment is present, the REXX special variable RC returns a 0. If the
environment is not present, RC returns a 1. For example, when editing a data set,
before trying to use ISPF/PDF edit, you can find out if ISPEXEC is available as
follows:
ARG dsname
SUBCOM ISPEXEC
IF RC=0 THEN

ADDRESS ISPEXEC "SELECT PGM(ISREDIT)" /* select ISPF/PDF edit =/
ELSE

"EDIT" dsname /* use TSO/E Tline mode edit =/

Examples Using the ADDRESS Instruction

Chapter 8. Entering Commands from an Exec 107

Issuing Other Types of Commands from an Exec

108

— ADDRESS Example 1

[FHrk gk rk Rk kR kR Rk Rk Rk Rk Rk krhrxkx REXX *kdhsrhdhdhrhsmrhrhhrhrrhrhmrrsrs/
/* This exec must be run in ISPF. It asks users if they know the =*/
/* PF keys, and when the answer is a variation of "no", it displays*/
/* the panel with the PF key definitions. */
/***/

SAY 'Do you know your PF keys?'

PULL answer .
IF answer = 'NO' | answer = 'N' THEN
ADDRESS ispexec "display PANEL(ispopt3c)"
ELSE
SAY '0.K. Never mind.'

— ADDRESS Example 2

/****************************** REXX *******************************/
/* This exec must be run in ISPF. It blanks out previous data set */
/* name information from the fields of an ISPF panel named newtool.x/
/* 1t then displays the panel to the user. */
/***/
ADDRESS 1ispexec

CALL blankem /* Call an internal subroutine */

IF RC = 0 THEN
"display PANEL(newtool)"
ELSE
"setmsg MSG(nt001)" /* Send an error message. */

EXIT

bTankem:
'vget (ZUSER)'
ntgroup = '
nttype = '
ntmem = '
RETURN RC

z/OS V1R2.0 TSO/E REXX User’'s Guide

Issuing Other Types of Commands from an Exec

— ADDRESS Example 3

[FHrk gk Rk Rk kR kR Rk ER R AR R R R E*Fx* REXX *krhdrhdhdhrhrrhhhrhrrhrhrrrsrs/
/* This exec must be run in ISPF. It displays panel named newtool */
/* and gets the name of a data set from input fields named ntproj, */
/* ntgroup, nttype, and ntmem. If no member name is specified (thex/
/* data set is sequential) the data set name does not include it. =*/
/* If a member name is specified, the member is added to data set =*/
/* name. The fully-qualified data set name is then inserted into a*/
/* TRANSMIT command that includes single quotation marks and the =*/
/* destination, which was received from an input field named ntdest*/
/***/
ADDRESS 1ispexec
"DISPLAY PANEL(newtool)"

ADDRESS tso /* re-establish the TSO host command environment */
IF ntmem = '' THEN /* member name is blank */
DO

dsname = ntproj'.'ntgroup'.'nttype
"TRANSMIT" ntdest "DA('"dsname"')"
END
ELSE
DO
dsname = ntproj'.'ntgroup'.'nttype'('ntmem')"’
"TRANSMIT" ntdest "DA('"dsname"')"
END

— ADDRESS Example 4

To link to or attach a logoff routine named MYLOGOFF and pass it the level of
TSO/E installed, you can issue the following instructions from an exec.

ADDRESS LINK 'MYLOGOFF' SYSVAR(SYSTSOE)

or
ADDRESS ATTACH 'MYLOGOFF' SYSVAR(SYSTSOE)

Chapter 8. Entering Commands from an Exec 109

Issuing Other Types of Commands from an Exec

110 z0S ViR2.0 TSO/E REXX Users Guide

Chapter 9. Diagnosing Problems Within an Exec

Debugging Execs B
Tracing Commands with the TRACE Instructlon e R
TRACECM
TRACEE . . . e b
Using REXX Special Varlables RC and SIGL T 2
RC. s 12
SIGL e R K
Tracing with the Interactlve Debug FaC|I|ty e R K
Starting Interactive Tracing14
Options Within Interactive Trace 116
Ending Interactive Trace 116

This chapter describes how to trace command output and other debugging
techniques.

Debugging Execs

When you encounter an error in an exec, there are several ways to locate the error.

» The TRACE instruction displays how the language processor evaluates each
operation. For |nformat|on about usmg the TRACE instruction to evaluate
expressions, see L “ .
For information about using the TRACE instruction to evaluate host commands,

see the next section, [Tracing Commands with the TRACE Instruction’.
» Special variables, RC and SIGL, are set by the system to indicate:
— The return code from a command - (RC)
— The line number from which there was a transfer of control because of a
function call, a SIGNAL instruction, or a CALL instruction - (SIGL)

* The TSO/E command EXECUTIL TS (Trace Start) and EXECUTIL TE (Trace
End) control the interactive debug facility as do various options of the TRACE
|nstruct|on For more mformatlon about interactive debug, see tTracing with thd

Tracing Commands with the TRACE Instruction

The TRACE instruction has many options for various types of tracing, two of which
are "COmmandS" II n n n

and "error" or "e".
TRACE C
When you specify "trace ¢" in an exec, any command that follows is traced before it
is executed, then it is executed, and the return code from the command is
displayed.

When an exec without "trace c¢" issues an incorrect TSO/E command, the exec
ends with a TSO/E error message. For example, a LISTDS command specifies an
incorrect data set name.

"LISTDS ?"

This example results in the following error message.

© Copyright IBM Corp. 1988, 2001 111

Debugging Execs

MISSING DATA SET NAME
INVALID KEYWORD, ?

k)%

If an exec includes "trace c¢" and again incorrectly issues the LISTDS command, the
exec displays the line number and the command, executes it, and displays the error
message and the return code from the command, as follows:

3 *-% "LISTDS ?"
>>> "LISTDS ?"
MISSING DATA SET NAME
INVALID KEYWORD, ?
+++ RC(12) +++

kK%

TRACE E

When you specify "trace e" in an exec, any host command that results in a nonzero
return code is traced after it executes and the return code from the command is
displayed.

If an exec includes "trace e" and again issues the previous incorrect LISTDS
command, the exec displays error messages, the line number and the command,
and the return code from the command, as follows:

MISSING DATA SET NAME
INVALID KEYWORD, ?
3 *-* "LISTDS ?"
+++ RC(12) +++

*k%k

For more information about the TRACE instruction, see lzZ0S TSO/F REXX
Beferencd

Using REXX Special Variables RC and SIGL

As mentioned earlier, the REXX language has three special variables — RC, SIGL,
and RESULT. These variables are set by the system during particular situations and
can be used in an expression at any time. If the system did not set a value, a
special variable displays its name, as do other variables in REXX. You can use two
of these special variables, RC and SIGL, to help diagnose problems within execs.

RC

RC stands for return code and is set every time a command is issued. When a
command ends without error, RC is usually set to 0. When a command ends in
error, RC is set to whatever return code is assigned to that error.

For example, the previous incorrect LISTDS command is issued followed by the RC
special variable in a SAY instruction.

"LISTDS ?"
SAY 'The return code from the command is' RC

This results in the following:

MISSING DATA SET NAME
INVALID KEYWORD, ?

The return code from the command is 12
*k%k

112 z0S ViR2.0 TSO/E REXX Users Guide

Debugging Execs

The RC variable can be especially useful in an IF instruction to determine which
path an exec should take.
"ALLOC DA('dsname') F(SYSPROC) SHR REUSE'
IF RC \= 0 THEN
CALL errorl
ELSE NOP

Note: The value of RC is set by every command and might not remain the same
for the duration of an exec. When using RC, make sure it contains the return
code of the command you want to test.

SIGL

The SIGL special variable is used in connection with a transfer of control within an
exec because of a function, or a SIGNAL or CALL instruction. When the language
processor transfers control to another routine or another part of the exec, it sets the
SIGL special variable to the line number from which the transfer occurred.

000901 /* REXX */
000905 CALL routine

000008

000009 routine:

000010 SAY 'We came here from Tine' SIGL /* SIGL is set to 3 =/
000011 RETURN

If the called routine itself calls another routine, SIGL is reset to the line number from
which the most recent transfer occurred.

SIGL and the SIGNAL ON ERROR instruction can help determine what command
caused an error and what the error was. When SIGNAL ON ERROR is included in
an exec, any host command that returns a nonzero return code causes a transfer of
control to a routine named "error". The error routine runs regardless of other actions
that would normally take place, such as the display of error messages.

000001 /* REXX */

000002 SIGNAL ON ERROR
000003 "ALLOC DA(new.data) LIKE(old.data)"

000008 "LISTDS ?"

000011 EXIT

000012

000013 ERROR:

000014 SAY 'The return code from the command on line' SIGL 'is' RC
000015 /* Displays:

000016 The return code from the command on line 5 is 12 */

For more information about the SIGNAL instruction, see £/QS TSO/E REXX

Tracing with the Interactive Debug Facility

The interactive debug facility permits a user to interactively control the execution of
an exec. A user can view the tracing of various types of instructions separated by
pauses as the exec runs. During a pause, a user can continue to the next traced
instruction, insert instructions, re-execute the previous instruction, and change or
terminate interactive tracing.

Chapter 9. Diagnosing Problems Within an Exec 113

Debugging Execs

Starting Interactive Tracing

You can start interactive tracing with either the ? option of the TRACE instruction or
with the TSO/E EXECUTIL TS command. When interactive tracing is initiated with
the TRACE instruction, interactive tracing is not carried over into external routines
that are called but is resumed when the routines return to the traced exec. When
interactive trace is initiated by the EXECUTIL TS command, interactive trace
continues in all external routines called unless a routine specifically ends tracing.

? Option of the TRACE Instruction: One way to start interactive tracing is to
include in an exec the TRACE instruction followed by a question mark and a trace
option. For example, TRACE ?1 (TRACE ?Intermediates). The question mark must
precede the option with no blanks in between. Interactive tracing then begins for the
exec but not for external routines the exec calls.

The following example includes a TRACE ?R (TRACE ?Results) instruction to
interactively trace the result of each instruction.

— Example of Interactive Trace

[xRk kR kT ARk TR RR T IR R KR AR *hkk*hdx REXX *xhdhkrhhhrhhrrhhhrhhhrhrsrs/
/* This exec receives as arguments the destination and the name */
/* of a data set. It then interactively traces the transmitting =/
/* that data set to the destination and the returning of a message */

/* that indicates whether the transmit was successful. */
/***/
TRACE ?R

ARG dest dsname .
"TRANSMIT" dest "DA("dsname")"

IF RC = 0 THEN
SAY 'Transmit successful.'
ELSE

SAY 'Return code from transmit was' RC

If the arguments passed to this exec were "node1.mel" and a sequential data set
named "new.exec", the interactively traced results would be as follows with each
segment separated by a pause.

4 N

8 *-* ARG dest dsname .
>>> "NODE1.MEL"
>>> "NEW.EXEC"
>‘> nn
+++ Interactive trace. TRACE OFF to end debug, ENTER to continue. +++)
4 9 %-* "TRANSMIT" dest "DA("dsname")" h
>>> "TRANSMIT NODE1.MEL DA(NEW.EXEC)"
0 message and 20 data records sent as 24 records to NODE1.MEL
Transmission occurred on 05/20/1989 at 14:40:11.)
(: 10 *-* IF RC = 0 :j
S>> npw

*-% THEN
11 *-* SAY 'Transmit successful.'
>>> "Transmit successful."
Transmit successful.

114 z0S ViR2.0 TSO/E REXX Users Guide

Debugging Execs

EXECUTIL TS Command: Another way to start interactive tracing is to issue the
EXECUTIL TS (trace start) command or cause an attention interrupt and type TS.
The type of interactive tracing begun is equivalent to that of the TRACE ?R
instruction, except that tracing continues through all routines invoked unless it is
specifically ended. For information about ending interactive trace, see

The EXECUTIL TS command can be issued from several environments; it affects
only the current exec and the execs it invokes. Like other TSO/E commands,
EXECUTIL TS can be issued from within an exec, from READY mode, and from an
ISPF panel.

e From Within an Exec

You can issue the EXECUTIL TS command from within an exec.

"EXECUTIL TS"

EXIT

The exec is then interactively traced from the point in the exec at which the
command was issued. Any other execs that the exec invokes are also
interactively traced.

You can also issue EXECUTIL TS from within a CLIST to initiate tracing in execs
that the CLIST invokes.

¢ From READY Mode
You can issue the command from READY mode.

READY
executil ts

The next exec invoked from READY mode is then interactively traced. If that
exec invokes another exec, the invoked exec is also interactively traced.
* From an ISPF Panel

You can also issue EXECUTIL TS from the ISPF COMMAND option or from the
command line of an ISPF panel.

----------------------------- TSO COMMAND PROCESSOR ==-=======mmmmmmmmmmmee
ENTER TSO COMMAND OR CLIST BELOW:

===> executil ts

%
(R ALLOCATE NEW DATA SET ==-mmmmmmmmmmmmmmcmmcmmeme)
COMMAND ===> tso executil ts)

The next exec invoked from ISPF is then interactively traced. If that exec calls
another exec, the called exec is also interactively traced. If you are in split screen
mode in ISPF, an exec run from the opposite screen is not interactively traced
because each side of a split screen is a different environment.

To begin interactive trace after pressing the attention interrupt key, sometimes

labeled PA1, enter TS (trace start) after the message that the attention facility
displays.

Chapter 9. Diagnosing Problems Within an Exec 115

Debugging Execs

CENTER HI TO END, A NULL LINE TO CONTINUE, OR AN IMMEDIATE COMMAND+ j
ts

The type of tracing is the same as that initiated by issuing the EXECUTIL TS
command.

Options Within Interactive Trace
When you are operating in the interactive debug facility, you have several options
during the pauses that occur between each traced instruction. You can:

» Continue tracing by entering a null line

* Type one or more additional instructions to be processed before the next
instruction is traced

* Enter an equal sign (=) to re-execute the last instruction traced
* End interactive tracing as described in the next topic.

Continuing Interactive Tracing: To continue tracing through an exec, simply
press the Enter key to enter a null line during the pause between each traced
instruction. The next traced instruction then appears on the screen. Repeatedly
pressing the Enter key, therefore, takes you from pause point to pause point until
the exec ends.

Typing Additional Instructions to be Processed: During the pause between
traced instructions, you can enter one or more instructions that are processed
immediately. The instruction can be any type of REXX instruction including a
command or invocation to another exec or CLIST. You can also enter a TRACE
instruction, which alters the type of tracing. After you enter the instruction, you might
need to press the Enter key again to resume tracing.

TRACE L /* Makes the language processor pause at labels only */

The instruction can also change the course of an exec, such as by assigning a
different value to a variable to force the execution of a particular branch in an IF
THEN ELSE instruction. In the following example, RC is set by a previous

command.
IF RC = 0 THEN
DO

instructionl
instruction2
END
ELSE
instructionA

If during normal execution, the command ends with other than a 0 return code, the
ELSE path will be taken. To force taking the IF THEN path during interactive trace,
you can change the value of RC as follows during a pause.

RC =0

Re-executing the Last Instruction Traced: You can re-execute the last
instruction traced by entering an equal sign (=) with no blanks. The language
processor then re-executes the previously traced instruction with values possibly
modified by instructions, if any were entered during the pause.

Ending Interactive Trace

You can end interactive tracing in one of the following ways:
* Use the TRACE OFF instruction.

116 z0S ViR2.0 TSO/E REXX Users Guide

Debugging Execs

e Let the exec run until it ends.
e Use the TRACE ? instruction.
e [ssue the EXECUTIL TE command.

TRACE OFF: The TRACE OFF instruction ends tracing as stated in the message
displayed at the beginning of interactive trace.

+++ Interactive trace. TRACE OFF to end debug, ENTER to continue. +++

You can enter the TRACE OFF instruction only during a pause while interactively
tracing an exec.

End the Exec: Interactive tracing automatically ends when the exec that initiated
tracing ends. You can cause the exec to end prematurely by entering the EXIT
instruction during a pause. The EXIT instruction causes the exec and interactive
tracing both to end.

TRACE ?: The question mark prefix before a TRACE option can end interactive
tracing as well as begin it. The question mark reverses the previous setting for
interactive tracing.

While interactively tracing an exec, you can also enter the TRACE ? instruction with
any operand to discontinue the interactive debug facility but continue the type of
tracing specified by the operand.

EXECUTIL TE: The EXECUTIL TE (Trace End) command ends interactive tracing
when issued from within an exec or when entered during a pause while interactively
tracing an exec.

For more information about the EXECUTIL command, see [0S TSQ/F REXX
Beferencd

Chapter 9. Diagnosing Problems Within an Exec 117

Debugging Execs

118 2z0S ViR2.0 TSO/E REXX Users Guide

Chapter 10. Using TSO/E External Functions

TSO/E External Functions

Additional Examples
Function Packages

This chapter shows how to use TSO/E external functions and describes function

Using the GETMSG Function .
Using the LISTDSI Function
Using the MSG Function. .
Using the MVSVAR Function .
Using the OUTTRAP Function.
Using the PROMPT Function .
Using the SETLANG Function .
Using the STORAGE Function.
Using the SYSCPUS Function.
Using the SYSDSN Function
Using the SYSVAR Function

User Information .

Terminal Information

Language Information .

Exec Information.

System Information .

Console Session Information

Search Order for Functions .

packages.

. 119
. 120
. 120
. 122
. 123
. 123
. 124
. 125
. 126
. 126
. 126
. 127
. 128
. 128
. 128
. 128
. 128
. 129
. 130
. 133
. 134

TSO/E External Functions

In addition to the built-in functions, TSO/E provides external functions that you can

use to do specific tasks. Some of these functions perform the same services as

control variables in the CLIST language.

The TSO/E external functions are:

© Copyright IBM Corp. 1988,

GETMSG - returns in variables a system message issued during an extended

MCS console session. It also returns in variables associated information about

the message. The function call is replaced by a function code that indicates
whether the call was successful.

LISTDSI - returns in variables the data set attributes of a specified data set. The

function call is replaced by a function code that indicates whether the call was

successful.

MSG - controls the display of TSO/E messages. The function returns the
previous setting of MSG.

MVSVAR - uses specific argument values to return information about MVS,
TSO/E, and the current session.

OUTTRAP - traps lines of TSO/E command output into a specified series of
variables. The function call returns the variable name specified.

PROMPT - sets the prompt option on or off for TSO/E interactive commands.

The function returns the previous setting of prompt.

SETLANG - retrieves and optionally changes the language in which REXX
messages are displayed. The function returns the previous language setting.

STORAGE - retrieves and optionally changes the value in a storage address.

2001

119

TSO/E External Functions

* SYSCPUS - returns in a stem variable information about all CPUs that are
on-line.

» SYSDSN - returns OK if the specified data set exists; otherwise, it returns an
appropriate error message.

* SYSVAR - uses specific argument values to return information about the user,
terminal, language, exec, system, and console session.

Following are brief explanations about how to use the TSO/E external functions. For

complete information, see 208 TSQ/E REXX Referenced.

Using the GETMSG Function

The GETMSG function retrieves a system message issued during an extended
MCS console session. The retrieved message can be either a response to a
command or any other system message, depending on the message type you
specify.

The message text and associated information are stored in variables, which can be
displayed or used within the REXX exec. The function call is replaced by a function
code that indicates whether the call was successful. See zZQS TSQ/E REXX

for more information about the syntax, function codes, and variables for

GETMSG. You must have CONSOLE command authority to use the GETMSG

function. Before you issue GETMSG, you must:

* Use the TSO/E CONSPROF command to specify the types of messages that are
not to be displayed at the terminal. The CONSPROF command can be used
before you activate a console session and during a console session if values
need to be changed.

* Use the TS